Instruction Manual CMB-MAN-6888Xi Rev. D

July 2017

Rosemount[™] 6888Xi

Advanced Electronics for Zirconium Oxide

Flue Gas O₂ Probes

Essential Instructions Read this page before proceeding

Emerson designs, manufactures and tests its products to meet many national and international standards. Because these instruments are sophisticated technical products, you MUST properly install, use, and maintain them to ensure they continue to operate within their normal specifications. The following instructions MUST be adhered to and integrated into your safety program when installing, using, and maintaining Rosemount products. Failure to follow the proper instructions may cause any one of the following situations to occur: Loss of life; personal injury; property damage; damage to this instrument; and warranty invalidation.

- Read all instructions prior to installing, operating, and servicing the product.
- If you do not understand any of the instructions, contact your Emerson representative for clarification.
- Follow all warnings, cautions, and instructions marked on and supplied with the product.
- Inform and educate your personnel in the proper installation, operation, and maintenance of the product.
- Install your equipment as specified in the Installation Instructions of the appropriate Instruction Manual and per applicable local and national codes. Connect all products to the proper electrical and pressure sources.
- To ensure proper performance, use qualified personnel to install, operate, update, program, and maintain the product.
- When replacement parts are required, ensure that qualified people use replacement parts specified by Emerson. Unauthorized parts and procedures can affect the product's performance, place the safe operation of your process at risk, and VOID YOUR WARRANTY. Look-alike substitutions may result in fire, electrical hazards, or improper operation.
- Ensure that all equipment doors are closed and protective covers are in place, except when maintenance is being performed by qualified persons, to prevent electrical shock and personal injury.

The information contained in this document is subject to change without notice.

NOTES

The 375 Field Communicator must be upgraded to System Software 2.0 with Graphic License for operation with the Rosemount 6888Xi Electronics. The AMS software must be upgraded to AMS 8.0 or above. Contact Emerson's Global Service Center (GSC) at 1-800-833-8314 to upgrade the 375 Field Communicator software to System Software 2.0 with Graphic License.

About this document

This manual contains instructions for installation and operation of the Rosemount 6888Xi Advanced Electronics. The following list provides notes concerning all revisions of this document.

Date	Notes
12/2012	This is the initial release of the product manual. The manual has been reformatted to reflect the Emerson documentation style and updated to reflect any changes in the product offering.
06/2016	Updated Single/Dual Channel Wiring Diagram and Single Channel with Flame Safety Wiring Diagram Updated Configuration, Added Activation of Autocalibration,
05/2017 07/2017	Updated the Emerson Logo, Address and Return of Material. Added the Appendix C: Product Certifications section.
	Date 12/2012 06/2016 05/2017 07/2017

Contents

• • • •	Essential Instructions	I
Section i:	Introduction	
	Preface	1
	Definitions	1
	Symbols	2
	Overview	2
	Technical Support Hotline	2
Section 1	: Description and Specifications	
1.1	Component Checklist	3
1.2	System Overview	3
	1.2.1 Power Supply – Current Loop Wiring	3
	1.2.2 System Configurations	4
	1.2.3 Automatic Calibration	5
	1.2.4 Communication Options	6
1.3	Specifications	8
Section 2	: Installation	
2.1	System Considerations	12
2.2	Mechanical Installation	12
2.3	Electrical Installation	15
Section 3	: Configuration, Startup and Operation	
3.1	Overview	25
3.2	Startup	25
	3.2.1 Configuration	26
	3.2.2 Operation	26
	3.2.3 Startup Display	26
	3.2.4 Error Conditions	27
	3.2.5 Keypad	27
	3.2.6 Password Protection.	34
3.3	Optional Advanced Features	34
	3.3.1 Extended Temperature	35
	3.3.2 Stoichiometer	35
	3.3.3 Programmable Reference	36
	3.3.4 Plugged Diffusion Element Diagnostic	36
3.4	System Parameter Descriptions	40
3.5	Probe Parameter Descriptions.	40
3.6	Operation Via HART/AMS	40
	3.6.1 Field Communicator Signal Line Connections	48
	3.6.2 Field Communicator Menu Trees	48

	3.7	Parame	eter Setup	48
		3.7.1	Test Gas Values	48
		3.7.2	Test Gas Times	53
		3.7.3	Output Tracking During Calibration	54
		3.7.4	Tolerance Check	54
		3.7.5	Alarm Relay Output Configuration.	55
		3.7.6	Analog Output Configuration	. 57
		3.7.7	Autocalibration	. 58
		3.7.8	Calibration Recommended Setup.	. 58
		3.7.9	Calibration Acknowledged Setup.	. 59
		3.7.10	Plug Diffuser Diagnostic.	59
		3.7.11	Low Temperature Set Point.	61
	3.8	Calibrat	tion - General	62
		3.8.1	General	62
		3.8.2	Calibration Procedure	62
		3.8.3	Calibration Log	67
		3.8.4	Reset Calibration	67
	3.9	D/A Trii	n	68
Sectio	on 4:	Trou	bleshooting	
	4.1	Overvie	ew of Operating Principles	71
	4.2	Genera	l	72
		4.2.1	Grounding	72
		4.2.2	Electrical Noise	72
		4.2.3	Electrostatic Discharge	72
	4.3	Alarm I	ndications	72
	4.4	Identify	ring and Correcting Fault Indications	73
	4.5	Calibrat	tion Passes, But Still Reads Incorrectly	74
		4.5.1	Probe Passes Calibration, O ₂ Still Reads High	75
		4.5.2	Probe Passes Calibration, O ₂ Still Reads Low.	76
		4.5.3	How do I detect a plugged diffuser?	76
		4.5.4	Can I calibrate a badly plugged diffuser?	76
Sectio	on 5:	Main	itenance and Service	
	5.1	Overvie	2W	79
	5.2	Mainte	nance Intervals	79
	5.3	Calibrat	tion	80
		5.3.1	Automatic Calibration	80
		5.3.2	Manual Calibration	80
	5.4	Replace	ement Parts	81
	5.5	6888Xi	Components Replacement	81
		5.5.1	I/O Board Replacement	81

	5.5.2 AC Relay Board Replacement85
	5.5.3 Power Supply Board Replacement
	5.5.4Front Panel Replacement
	5.5.5 DR Board Replacement90
Section 6	: Replacement Parts
6.1	6888Xi Electronics93
6.2	Calibration Components93
Section 7	: Optional Accessories
7.1	HART Handheld 375/475 Field Communicator95
7.2	Asset Management Solutions (AMS)95
7.3	By-Pass Packages95
7.4	SPS 4001B Single Probe Autocalibration Sequencer96
7.5	IMPS 4000 Intelligent Multiprobe Test Gas Sequencer97
7.6	O ₂ Calibration Gas98
7.7	OxyBalance Display and Averaging System99
Appendi	A: Safety Data
A.1	Safety Instructions
Appendi	B: Return of Material
B.1	Returning Material122
Appendi	c C: Return of Material
C.1	European Directive Information
C.2	Ordinary Location Certification
C.3	Installing Equipment in North America123
C.4	Rosemount 6888A In-Situ Oxygen Transmitter for General Purpose Locations123
Index	

Section i: Introduction

Preface

The purpose of this manual is to provide information concerning components, functions, installation and maintenance of the 6888Xi Electronics. Some sections may describe equipment not used in your configuration. The user should become thoroughly familiar with the operation of this module before operating it. Read this instruction manual completely.

Definitions

The following definitions apply to WARNINGS, CAUTIONS, and NOTES

Highlights an operation or maintenance procedure, practice, condition, statement, etc. If not strictly observed, could result in injury, death, or long-term health hazards of personnel.

A CAUTION

Highlights an operation or maintenance procedure, practice, condition, statement, etc. If not strictly observed, could result in damage to or destruction of equipment, or loss of effectiveness.

NOTE

Highlights an essential operating procedure, condition, or statement.

Symbols

- 🛓 💠 EARTH (GROUND) TERMINAL
- PROTECTIVE CONDUCT OR TERMINAL
- : RISK OF ELECTRICAL SHOCK
- 🖄 : WARNING: REFER TO INSTRUCTION MANUAL

Overview

The Rosemount 6888Xi is specifically designed to control a zirconium oxide probe for measuring oxygen, usually the O_2 remaining from a combustion process. Call the Rosemount Customer Support Center (CSC) to get recommendations for other oxygen probes.

Phone : +1 855 724 2628

The 6888Xi electronics has several main functions:

- 1. Heater Control The electronics receives a type K thermocouple input from an O₂ probe and switches power on and off to the probe's heater in order to maintain a temperature setpoint of 736 °C.
- 2. Signal Conditioning The electronics receives the raw millivolt signal from the O₂ sensing cell, then linearizes and amplifies the signal to provide a linear 4-20 mA output signal used for recording or as an input into a DCS system for control purposes.
- 3. Calibration A bottled calibration gas of known value is typically flowed into the probe's sensor to verify that it is reading correctly. If the signal is out of calibration, the calibration gas is used to adjust the 4-20 mA output signal. During calibration the 6888Xi prompts the technician to flow two calibration gases into the probe and, with the calibration gases flowing, automatically adjusts the O₂ signal. With the addition of a Single Probe Sequencer (SPS), the 6888Xi Advanced Electronics can also switch the calibration gases on and off.
- 4. Diagnostics Multiple alarms are available for display. The alarm displays are intended to assist a technician in locating where an instrument problem may reside.

The Rosemount 6888Xi Advanced Electronics has been verified to operate the following probes:

- Westinghouse 218 and World Class (115 V heater only)
- Rosemount Oxymitter and 6888
- Yokogawa

The Rosemount 6888Xi Advanced Electronics will not operate the following probes:

- World Class (44 V Heater)
- XSTREAM O₂ Probe (Transmitter, Integral Electronics)

Technical Support Hotline

For assistance with technical problems, please call the Customer Support Center (CSC).

Phone: +1 855 724 2638

In addition to the CSC, you may also contact Field Watch. Field Watch coordinates Emerson's field service throughout the U.S. and abroad.

Phone: 1-800-654-RSMT (1-800-654-7768)

e-mail: gas.csc@emerson.com

Section 1: Description and Specifications

Component Checklist 1.1

A typical Rosemount O₂ Combustion Flue Gas Transmitter should contain the items shown in Figure 1-1. A complete Oxygen Analyzer system will include some or all of the equipment shown. However, this manual describes item 8 only. Record the part number, serial number, and order number for the Rosemount 6888Xi Advanced Electronics in the table located on the back cover of this manual.

Also, use the product matrix (Table 1-1) at the end of this section to compare your order number against your unit. The first part of the matrix defines the model. The last part defines the various options and features. Ensure the features and options specified by your order number are on or included with the unit.

1.2 System Overview

1.2.1 Power Supply-Current Loop Wiring

This Instruction Manual is designed to supply details needed to install, start up, operate, and maintain the Rosemount 6888Xi Advanced Electronics. Signal conditioning electronics outputs a 4-20 mA signal representing an O_2 value. This information, plus additional details, can be accessed with the handheld HART Model 375/475 Field Communicator or Asset Management Solutions (AMS) software.

Figure 1-1. Typical System Package

1.2.2 System Configurations

Integral Transmitter Electronics, HART and 6888Xi Communications

The Rosemount 6888Xi Advanced Electronics, Figure 1-2, provide a local display/keypad for setting up, calibrating, and displaying O₂, and for diagnosing probe problems. The 6888Xi also offers additional features including a "Calibration Recommended" diagnostic, fully automatic calibration, optional flame safety interface (single probe version only), extended process temperature capability, stoichiometer, programmable reference, and plugged diffusor. These additional features will be discussed in other sections of this manual. The 6888Xi can be purchased to operate a single probe, or as a dual channel unit to run two probes.

Traditional Architecture, HART and 6888Xi Communications

Some customers prefer not to mount electronics onto the probe, so a "traditional architecture" version is offered. This probe sends raw millivolt signals via a 7-conductor cable to the 6888Xi electronics, Figure 1-3, which does all heater control and signal conditioning in addition to its display/keypad functions. The 6888Xi Advanced Electronics is offered to support direct replacement probes with 120 volt heaters.

Figure 1-3. Direct Replacement Probe With Traditional Architecture Electronics

1.2.3 Automatic Calibration

Calibrations consist of introducing bottled gases of known value into the probe so the electronics can make automatic adjustments to the O_2 readings to match the bottled gas value. 0.4% O_2 and 8% O_2 (balance nitrogen) gases are recommended. Never use nitrogen as a calibration gas.

Flowmeters (for calibration gases) and regulators and flowmeters (for reference air) are available as loose components, mounted into an optional manual calibration switching panel, or as a fully automatic calibration system, Figure 1-4, where calibration solenoids are switched from the 6888Xi Advanced Electronics. See IM-106-340AC, SPS 4001B Single Probe Autocalibration Sequencer or IM-106-400IMPS, IMPS 4000 Intelligent Multiprobe Test Gas Sequencer, for additional details.

1.2.4 Communication Options

Data Communications

An operator can configure and troubleshoot the O₂ Probe system in one of two ways:

- 1. Using the 6888Xi Advanced Electronics keypad and display to access the following optional advanced features:
 - Probe configuration
 - Fully automatic calibration
 - Failure diagnostics
 - Flame safety interface
 - High temperature operation [above 700 °C (1292 °F) standard temperature].
 - Stoichiometer feature provides the ability to indicate O₂ efficiency when the combustion process goes into reducing conditions (0% O₂).
 - Programmable reference provides enhanced accuracy when measuring at or near O₂ level (20.95% O₂).
 - Plugged diffusor diagnostics
- 2. Using the HART Interface. The 6888Xi's 4-20 mA output line transmits an analog signal proportional to the oxygen level. The HART output is superimposed on the 4-20 mA output line. This information can be accessed through the following:
 - Rosemount Model 375/475 Field Communicator The handheld communicator requires Device Description (DD) software specific to the 6888Xi. The DD software will be supplied with many Model 375/475 units but can also be programmed into existing units at most Emerson service offices. See Section 4, Startup and Operation, for additional information.
 - Personal Computer (PC) The use of a personal computer requires AMS software available from Emerson.
 - Delta V and Ovation Distributed Control System (DCS) with AMS-inside capability.

NOTE

The 375 Field Communicator must be upgraded to System Software 2.0 with Graphic License for operation with the 6888Xi. The AMS software must be upgraded to AMS 8.0 or above. Contact Emerson's Global Service Center (GSC) at 1-800-833-8314 to upgrade the 375 Field Communicator software to System Software 2.0 with Graphic License.

3. The 6888Xi can also transmit HART information wirelessly via a wireless THUM Adapter, Figure 1-5. The THUM Adapter threads into the 6888Xi conduit port and converts the 4-20 mA O2 signal to a wireless protocol. All other HART information is also transmitted.

In addition to the wireless THUM Adapter, a hard-wire connection of the 4-20 mA signal to the DCS may be used at the same time. More detailed information regarding the application of the THUM Adapter is available in Product Data Sheet 00813-0100-4075.

4. The 6888Xi can be configured to communicate with a 6888A FOUNDATION Fieldbus probe. Refer to section 3.2.1 Configuration to set up for FOUNDATION Fieldbus communications.

Optional OxyBalance Display and Averaging System

Receives up to eight 4-20 mA signals from individual 6888Xi units. Trends individual outputs and calculates four programmable averages as additional 4-20 mA outputs. OxyBalance graphic displays are shown in Figure 1-5. See IM-106-4050, OxyBalance Oxygen Display and Averaging System, for additional details.

FIGURE 1-5. OxyBalance Displays

1.3 Specifications

Measurement Specifications	
Net O ₂ Range:	0 to 50% O_2 user scalable -2 to 50% O_2 user scalable with stoichiometer
Lowest Detectable Limit:	0.01% O ₂
Signal Stability:	$\pm 0.03\% O_2$
Accuracy in Reducing Conditions:	±10% of reading or 0.1% O ₂
System Response in Reducing Conditions:	going from oxidizing to reducing -T90 in 120 seconds going from reducing to oxidizing -T90 in 30 seconds
Ambient Temperature Effect on Xi 4-20 mA Signal:	less than 0.0025% O ₂ per degree Celsius
Environmental Specifications	
6888Xi Advanced Electronics:	Type 4X/IP66, Polycarbonate Material
Ambient Temperature Limits:	-20 °C to 50 °C (-4 °F to 122 °F) -20 °C to 70 °C (-4 °F to 158 °F) as measured by electronics
6888Xi LCD display:	
Ambient Temperature Limits	-20 °C to 55 °C (-4 °F to 131 °F)
General Purpose Certifications:	
Installation Specifications	
Mounting:	Panel, wall, or pipe.
Reference Air:	2 scfh (1L/min), clean, dry, instrument-quality air
	(20.95% O ₂), regulated to 5 psi (34 kPa)
Calibration:	Semi-automatic or automatic
Cal Gases:	0.4% O_2 and 8% O_2 , balance N_2 recommended
Transmitter Electrical Power:	200 IL (6 I m) maxmum length
	2 - 24 VDC (loop-powered from control to tool to tool to tool to tool to tool too
Electrical Power for 6888Xi:	120/240VAC ±10%, 50/60 Hz
Power Consumption of 6888Xi:	12 VA maximum or 1020 VA maximum with Traditional Architecture, 120V Probes
Alarm Relay Outputs:	Two provided - 2 Amperes, 30 VDC, Form-C
Optional Loss of Flame Input:	Internally powered input to remove heater power actuated via dry contact output from user's* flame scanner

Emerson has satisfied all obligations from the European legislation to harmonize the product requirements in Europe. All static performance characteristics are with operating variables constant. Specifications subject to change without notice.

Table 1-1. Product Matrix, Advanced Electronics

6888Xi Advanced Electronics

Code	Remote Type
10XY	Single Channel O2
20XY	Single Channel O2 with Flame Safety Interlock for Heater
30XY	Dual Channel O
40XY	Single Channel O2, Traditional Architecture for 120V Probes

Code	Mounting
00	No Hardware
01	Panel Mount Kit with Gasket
02	2" Pipe / Wall Mount Kit

Code	Cable
00	No Cable
10	20' (6m) Cable
11	40' (12m) Cable
12	60' (18m) Cable
13	80' (24m) Cable
14	100' (30m) Cable
15	150' (45m) Cable
16	200' (60m) Cable

Code	Stoichiometer Function
00	No
01	Single Channel
02	Dual Channel

Code	Programmable Reference Function
00	None
01	Single Channel
02	Dual Channel

Code	Extended Temperature Function
00	None
01	Single Channel
02	Dual Channel

Code	Plugged Diffuser Diagnostic Function
00	None
01	Single Channel
02	Dual Channel

Table 1-2. Product Matrix, O₂ Autocalibration Accessories

XSO2CAL	O2 Autocalibration Accessories				
	Code	Single Probe Sequencers Autocalibration Options			
	00	None	None		
	01	SPS 400	4001B Single Probe Sequencer, general purpose NEMA 4X, includes check valve for probe		
		Code	Intelligent Multiprobe Sequencers (IMPS)		
		00	None		
		01	IMPS single-probe, general purpose NEMA 4X, includes check valve for probe		
		02	IMPS two-probe, general purpose NEMA 4X, includes check valve for probe		
		03	IMPS three-probe, general purpose NEMA 4X, includes check valve for probe		
		04	IMPS four-probe, general purpose NEMA 4X, includes check valve for probe		
		05	IMPS single-probe, 115V heated general purpose NEMA 4X, includes check valve for probe		
		06	IMPS two-probe, 115V heated general purpose NEMA 4X, includes check valve for probe		
		07	IMPS three-probe, 115V heated general purpose NEMA 4X, includes check valve for probe		
		08	IMPS four-probe, 115V heated general purpose NEMA 4X, includes check valve for probe		
		09	IMPS single-probe, 220V heated general purpose NEMA 4X, includes check valve for probe		
		10	IMPS two-probe, 220V heated general purpose NEMA 4X, includes check valve for probe		
		11	IMPS three-probe, 220V heated general purpose NEMA 4X, includes check valve for probe		
		12	IMPS four-probe, 220V heated general purpose NEMA 4X, includes check valve for probe		

TABLE 1-3. Calibration Glass

Part Number	Description
1A99119G01	Two disposable calibration gas bottles - 0.4% and 8% O_2 , balance nitrogen - 550 liters each *
1A99119G02	Two flow regulators for calibration gas bottles
1A99119G03	Bottle rack

*Calibration gas bottles cannot be shipped via airfreight.

Section 2: Installation

WARNING

Before installing this equipment read the "Safety instructions for the wiring and installation of this apparatus" at the front of this Instruction Manual. Failure to follow safety instructions could result in serious injury or death.

🛕 WARNING

Install all protective equipment covers and safety ground leads after installation. Failure to install covers and ground leads could result in serious injury or death.

WARNING

The 6888Xi Advanced Electronics can be installed in general purpose areas only. Do not install the 6888Xi in hazardous areas or in the vicinity of flammable liquids.

A CAUTION

If external loop power is used, the power supply must be a safety extra low voltage (SELV) type.

2.1 System Considerations

A typical system installation for a 6888Xi and O₂ Probe is shown in Figure 2-1.

FIGURE 2-1. Typical System installation

2.2 Mechanical Installation

6888Xi Advanced Electronics

The 6888Xi Advanced Electronics is available in a panel mounting, wall mounting, or pipe mounting configuration. Refer to Figure 2-2 or Figure 2-3 for the panel, wall, or pipe mounting details.

- 1. Ensure all components are available to install the 6888Xi.
- 2. Select a mounting location near or removed from the O₂ Probe. Consider the temperature limitations of the 6888Xi (see "Specifications") when selecting the mounting location.
- 3. Mount the 6888Xi at a height convenient for viewing and operating the interface. Approximately 5 ft (1,5 m) is recommended.
- 4. The keypad window on the 6888Xi may have interior and exterior protective membranes. Remove the protective membranes prior to use of the 6888Xi enclosure. Failure to remove the protective membranes may cause the display to appear distorted. The membrane may be difficult or impossible to remove after extended use at elevated temperatures.

FIGURE 2-3. 6888XI Advanced Electronics - Wall/Surface and Pipe Mounting Details

2.3 Electrical Installation

Rosemount 6888Xi Advanced Electronics

All wiring must conform to local and national codes. Multiple wiring diagrams are shown in this section. Always refer to the diagrams that apply to your transmitter configuration and disregard all other wiring diagrams.

Disconnect and lock out power before connecting the power supply.

WARNING

Install all protective covers and safety ground leads after installation. Failure to install covers and ground leads could result in serious injury or death.

A WARNING

To meet the Safety Requirements of IEC 1010 (EC requirement), and ensure safe operation of this equipment, connection to the main electrical power supply must be made through a circuit breaker (min 10A) which will disconnect all current-carrying conductors during a fault situation. This circuit breaker should also include a mechanically operated isolating switch. If not, then another external means of disconnecting the supply from the equipment should be located close by. Circuit breakers or switches must comply with a recognized standard such as IEC 947.

NOTE

Line voltage, signal, and relay wiring must be rated for at least 105 °C (221 °F).

NOTE

If metal conduit is used with the 6888Xi the conduit should be reliably bonded to protective earth. The grounding plate inside the 6888Xi is not bonded to PE and does not provide adequate grounding.

- 1. Remove cover screws from the front cover of the 6888Xi. Swing down the front cover of the interface box.
- 2. Pull out the I/O board on the right-hand side of the card rack inside the 6888Xi. If your system is configured to operate two transmitter probes there are two I/O interface boards.
- 3. See Figures 2-5, 2-6 and 2-7. Connect the 4-20 mA signal wires at J4 of the I/O board. Attach the supplied ferrite clamp over the 4-20 mA OUT wires that extend past the shield.

NOTE

Installation of the ferrite clamp over the 4-20 mA OUT wires is required for compliance with the European EMC Directive.

- 4. Terminate the shield of the 4-20 mA signal wires at the designated ground terminal of the 6888Xi. Do not allow bare shield wires to contact the circuit boards. Insulate the shield wires prior to termination.
- 5. Connect the signal wires from the SPS or IMPS (if used) to the applicable terminals of J3. Refer to the SPS or IMPS instruction manual for wiring details.

- 6. Connect the customer's alarm indicator devices to the alarm indicator relay terminals.
- 7. Reinstall the I/O board in the card rack of the 6888Xi.
- 8. If your system is configured for two channel operation, repeat steps 2 through 7 to connect the other signal wires.
- 9. Remove the connector from the power supply board located on the left-hand side of the card rack inside the 6888Xi.
- 10. Connect the line, or L1 wire to the L1 terminal and the neutral, or L2 wire, to the N terminal.
- 11. Reinstall the power supply connector in the power supply board.

Flame Safety Interlock

A flame safety interlock by Emerson is available for heater power disconnect whenever there is a loss of the process flame or a heater runaway condition (heater over-temperature) in the O_2 Probe. This input is internally powered by the 6888Xi and is actuated via a dry contact output from the user's flame scanner. A closed contact indicates a flame is present. An open contact indicates a loss of flame.

- 1. Connect the signal wires from the burner management system flame status output to the flame status input terminals of J2. The flame status sensing device is supplied by the customer. Refer to the applicable OEM documents for signal wiring details.
- 2. Remove the J1 and J2 connectors from the AC relay board.
- 3. Connect the AC line input to the J1 connector.
- 4. Connect the AC power to the 6888A probe to the J2 connector.
- 5. Reinstall connector J1 and J2 to the AC relay board.

Traditional Architecture Cable Connections

A traditional architecture configuration is used to provide for remote location of the transmitter electronics. All electronics are housed inside the 6888Xi. A multi-conductor power/signal cable connects between the probe and the 6888Xi. Use the following procedure to connect the traditional architecture probe to the 6888Xi.

NOTE

The Traditional Architecture cable is provided at the specified length and is ready for installation. The cable glands must be properly terminated to maintain EMC/EMI noise protection.

FIGURE 2-4. Traditional Architecture Cable Gland Assembly

- 1. Run the 7-conductor cable between the traditional architecture probe and the installation site for 6888Xi.
 - Use new cable conduit or trough as needed.
- 2. Install the cable and lead wires to the probe per manufacturer's instructions.
- 3. Install the cable at the probe housing and at the 6888Xi enclosure according to the following procedure:
 - a. Unscrew locking nut from gland assembly, Figure 2-4, and slide locking nut back along cable.

- b. Pull the gland body away from the plastic insert. Use care not to damage the cable shield braid.
- c. Insert the cable wires into the proper entry port in either the probe housing or the 6888Xi enclosure.
- d. At the probe housing, apply Teflon tape or similar sealing compound to the tapered pipe threads. Thread the gland body into the probe housing until properly seated.
- e. At the 6888Xi enclosure, insert the gland body into the left front cable port from the inside of the enclosure. Use the rubber O-ring provided to seal the cable port.
- f. Ensure the cable shield braid is evenly formed over the gray insert. When properly formed, the braid should be evenly spaced around the circumference of the insert and not extend beyond the narrow diameter portion.
- g. Carefully press the gray insert into the gland body. The grooves on the insert should align with similar grooves inside the gland body. Press the insert in until it bottoms out in the gland body.
- h. Slide the locking nut up and thread it onto the gland body. Tighten the locking nut so the rubber grommet inside the plastic insert compresses against the cable wall to provide an environmental seal.
- 4. At the 6888Xi, connect the cable leads to the connectors on the transmitter I/O board as indicated in Figure 2-7.

FIGURE 2-5. Single/Dual Channel Wiring Diagram

FIGURE 2-5 cont. Single/Dual Channel Wiring Diagram

FIGURE 2-6. Single Channel with Flame Safety Wiring Diagram

FIGURE 2-6 cont. Single Channel with Flame Safety Wiring Diagram

FIGURE 2-7. Traditional Architecture Wiring Diagram

NOTES:

- 1. SEE INSTRUCTION MANUAL FOR ADDITIONAL INSTALLATION AND OPERATING INSTRUCTIONS.
- ALL WIRING MARKED WITH AN ASTERISK (*) IS FACTORY WIRING INSIDE THE 6888XI.
 EXCEPT FOR JP7 AND JP8 ON IO BOARD, JUMPER AND SWITCH SETTING ARE FACTORY SET AND ARE SHOWN FOR REFERENCE ONLY.

OXT DR PROBE

6888 DR PROBE

FIGURE 2-7 cont. Traditional Architecture Wiring Diagram

Section 3: Configuration, Startup and Operation

Install all protective equipment covers and safety ground leads before equipment startup. Failure to install covers and ground leads could result in serious injury or death.

A CAUTION

If external loop power is used, the power supply must be a safety extra low voltage (SELV) type.

3.1 Overview

Interface to the 6888Xi for setup, calibration and diagnostics can be via a 375/475 Field Communicator or Asset Management System. Setup, calibration and diagnostic operations will differ depending on the selected interface for communications with the transmitter.

3.2 Startup

NOTE

The 6888Xi offers optional advanced features such as extended temperature capability, autocalibration via an SPS or IMPS, a stoichiometer feature for indicating the level of oxygen deficiency in reducing conditions, programmable reference to enhance accuracy at near ambient levels of O_2 and plugged diffusor diagnostics to help detect when the diffusor requires maintenance.

3.2.1 Configuration

Refer to Figure 3-1 for the configuration of jumpers JP1 through JP8. The jumper configuration for your I/O board depends on the system design and system components used in your installation.

The setting of switch SW4 and the configuration of jumpers JP1 through JP8 must be verified on the I/O board in the 6888Xi. Refer to figures 2-5, 2-6 and 2-7 in Section 2 for additional details.

If necessary, the I/O Board can be reset to factory default settings in order to configure the following parameters:

Sensor Type – O₂ or CO

- 1. **O**₂ For Rosemount O₂ probe models including Oxymitter and 6888, and most similar competitor oxygen probes
- 2. CO Reserved for future use

Device Type – HART or FOUNDATION Fieldbus

- 1. HART For Rosemount O₂ probes models including Oxymitter and 6888, and most similar competitor oxygen probes
- 2. FOUNDATION Fieldbus For 6888 models with FOUNDAITON Fieldbus electronics only

Autocal Setting – None, SPS, IMPS or Integral

- 1. None Manual calibration with the standard probe housing configuration
- 2. **SPS** Automatic calibration with the standard probe housing configuration using the SPS4001B
- 3. IMPS Automatic calibration with the standard probe housing configuration using the IMPS
- 4. **Integral** Automatic calibration with the 6888 integral autocal probe housing configuration.

WARNING

Resetting the I/O Board clears any existing probe data.

To reset the I/O board:

- 1. Apply power to 6888XI.
- 2. Press MENU until the "System" menu appears.
- 3. Select CONFIGURE IOB.
- 4. Press the ENTER key to continue.
- 5. Select I/O BOARD 1. (Note: With a dual channel 6888XI, either or both I/O boards may be reset and reconfigured.)
- 6. Press the ENTER key to continue.
- 7. Select RESET I/O BOARD. Press the ENTER key to continue.
- 8. When the reset menu appears, select FACTORY DEFAULTS. Press the ENTER key to continue.

FIGURE 3-1. I/O Board Jumper Configuration

3.2.2 Operation

The following procedures describe operations using the 6888Xi to set up and calibrate the system. Additional operating instructions are included in the SPS 4001B or IMPS 4000 instruction manual, if applicable to your system.

3.2.3 Startup Display

The O_2 Probe will take approximately 45 minutes to warm up to the 736 °C heater setpoint. The 4-20 mA signal will remain at a default value of 3.5 mA through this warm-up period. Once warm, the probe will be reading oxygen and the 4-20 mA signal display will be the 0 to 10% O_2 value.

FIGURE 3-2. 6888XI Display (Typical)

3.2.4 Error Conditions

If there is an error condition at startup, an alarm message will be displayed. Refer to Section 4: Troubleshooting, to determine the cause of the error. Clear the error and cycle power. The O_2 and temperature display should return less the alarm message.

3.2.5 Keypad

The 6888Xi can be used to change the software and alarm settings, to adjust the high and low gas settings, and to initiate the calibration sequence. Refer to the following control descriptions. Use the control keys on the front panel of the 6888Xi, Figure 3-2, to navigate the 6888Xi menu, Figure 3-3.

MENU toggles between three Main menu options: System, Probe1, and Probe2 (if available). The top level of the selected main menu is displayed.

DIAG toggles between the Alarms list of the three main menus. All faults and warnings related to the selected main menu device are displayed.

ENTER saves newly entered data and returns you to previous menu level.

EXIT returns you to the previous menu level without saving newly entered data. When navigating the menu tree, pressing EXIT returns you to the Main menu.

UP/DOWN keys scroll up and down through menu items. During data entry the Up/Down keys increment and decrement the data values.

LEFT arrow key returns you to the previous menu level. During data entry, the left arrow key moves the cursor one digit to the left.

RIGHT arrow key advances you to the next menu level and, when a menu item is highlighted, selects the item from a list of menu options. During data entry, the right arrow key moves the cursor one digit to the right.

Figure 3-3. 6888Xi Menu (Sheet 1 of 6)

Figure 3-3. 6888Xi Menu (Sheet 2 of 6)

Figure 3-3. 6888Xi Menu (Sheet 3 of 6)

Figure 3-3. 6888Xi Menu (Sheet 4 of 6)

Figure 3-3. 6888Xi Menu (Sheet 5 of 6)

Figure 3-3. 6888Xi Menu (Sheet 6 of 6)

Note 1: Visible if the device is configured for HSPS Autocal.

Note 2: Visible if the Programmable Reference software feature is enabled.

Note 3: Visible if the Extended Temperature software feature is enabled.

Note 4: Visible if the Diffuser Warning software feature is enabled.

Note 5: Visible if the Factory Mode switch is on. Note 6: Visible if the device is configured for Autocal.

3.2.6 Password Protection

The main display and diagnostic screens of the 6888Xi can be viewed at any time, but further access and unauthorized configuration changes can be prevented by enabling a password protection feature. However, the 6888Xi is shipped with password protection disabled.

Password protection can be enabled by selecting: System Main Menu > Configure UIB > Security > Enable Password (see the 6888Xi Menu, Figure 3-3).

The factory default upon enabling the password protection is 0000, but the password can consist of any 4 numeric characters.

If the user forgets the password, call Rosemount Customer Support Center at +1 855 724 2628 to gain access to a master password.

A "Lock" icon will be displayed at the top right corner of the main display when password protection is in effect.

The password protection will relock itself after a certain number of seconds with no button pushes (defined as "revert time" in the same "LCD setup" menu).

The 6888Xi has a "Reset" function that reestablishes all factory default conditions, including the password protection feature, i.e. the password protection will fall back to a disabled condition after a reset.

3.3 Optional Advanced Features

Advanced features are typically ordered factory programmed. However, these advanced features are also available for field retrofit.

A 6888Xi is shipped from the factory with the optional enhanced software features enabled based on the model configuration.

WARNING

The I/O Board is shipped from the factory without any of the enhanced software features activated. These features must be activated once the new board has been installed and before the Remote Interface is put into service.

🛕 WARNING

If the existing I/O Board has been operated with the Stoichiometric enhanced software feature, this feature must be activated in the new board before the Remote Interface is put back into service. Failure to do so will cause a false analog output signal to the DCS.

NOTE

For enhanced software feature option upgrades or to enable the feature to duplicate the existing configuration, contact Emerson at 1-800-433-6076. Reference the following:

5A00269G01	Enhanced Software Option Upgrade, Stoichiometric Function
5A00269G02	Enhanced Software Option Upgrade, Programmable Reference Function
5A00269G03	Enhanced Software Option Upgrade, Extended Temperature Function
5A00269G04	Enhanced Software Option Upgrade, Diffuser Warning Function

3.3.1 Extended Temperature

The Oxygen Analyzer employs a heater and thermocouple to maintain a temperature normal set point at 736 °C (1357 °F). Temperature control is maintained within ±1 °C to process temperatures of about 705 °C (1300 °F). This is satisfactory for most applications, but excursions to higher temperatures can occur in some processes.

The extended temperature function allows the heater to be turned off and the process temperature used to heat the sensing cell. The function also provided for configuring the heater to operate at either 736 °C (1357 °F) or 550 °C (1022 °F). A lower temperature may be desirable by turning off the heater at a lower temperature to reduce the instance of an ignition source in the process. Furthermore, the user has the ability to choose whether or not the heater will turn back on if the process temperature falls below the set point. Again, this reduces the instance of an ignition source in the process if a flameout condition should occur.

When the extended temperature function is disabled the heater normal set point is at 736 °C. An alarm will occur if the heater falls below 726 °C or rises above 750 °C. Either of these alarms will also force the analog output signal to a critical alarm level of either 3.5 mA or 21.5 mA as configured. When the extended temperature function is enabled, an alarm will occur if the heater falls 10 °C below the set point of either 550 °C or 736 °C and will force the analog output signal level to either 3.5 mA or 21.5 mA. With either set point, the high temperature alarm defaults to 750 °C but can be configured to any temperature between 750 °C and 850 °C. However, a heater temperature above this level will cause an alarm but will not force the analog output signal level to either 3.5 mA or 21.5 mA.

When the heater turns off, the oxygen reading is adjusted continuously to compensate for the varying process temperatures. It should be noted that cell life will be reduced by continuous operation at temperatures above 736 °C (1357 °F). If process temperatures are expected to be continuously above 705 °C, the use of an optional bypass or probe mounting jacket accessory is recommended.

3.3.2 Stoichiometer

Process upsets can sometimes cause a combustion process to go into sub-stoichiometric or reducing conditions. The oxygen readings from one or more probes may decline all the way to zero. The stoichiometer cell will measure the amount of oxygen deficiency during these reducing conditions. The trends in your DCS can be set up for a lower range limit of -1 or -2% oxygen to depict the level of oxygen deficiency.

NOTE

Make sure the DCS is configured for the same range as the 6888Xi. For instance: -1% O2 to 10% O2.

The operator can see if his control recovery actions are having the desired effect. These types of events do not occur frequently, but knowing the parameters of the situation prevents overcorrecting while coming out of the reducing condition. The stoichiometer feature requires purchasing the acid resistant stoichiometer cell and the stoichiometer feature inside the 6888Xi.

3.3.3 Programmable Reference

The zirconium oxide sensing technology has historically measured process oxygen by using ambient or instrument air as a reference (20.95% oxygen). The sensor develops most of its signal at the low oxygen levels typically found in combustion flue gasses (2-4% oxygen), and is most accurate at these levels. When measuring near 20.95% O_2 , the sensor develops only a few millivolts of signal, and accuracy degrades.

The programmable reference feature permits the user to use a bottled reference gas of low oxygen value (0.4% oxygen recommended). When measuring at or near 21% oxygen, a strong negative oxygen signal results, with much improved accuracy. A bottle of reference gas typically lasts about a month at the low flows required. Typical applications would be:

Flue gas recirculation - controlling the mixing of flue gasses into the burner windbox prior ahead of the burner to reduce NOx emissions.

Moisture monitoring - measuring the amount of moisture coming off of industrial dryers by noting the dilution effect water vapor has on the normal 20.95% ambient drying air. (Non-combustion drying processes only.)

Enriched oxygen concentration - pure oxygen is sometimes mixed in with the combustion air to increase heat at the flame. This is used in steel and other metals reduction processes and in some catalyst regenerators.

3.3.4 Plugged Diffusion Element Diagnostic

In situ analyzers do very well in high particulate flue gases resulting from processes as such coal or biofuel boilers, or lime and cement kilns because the passive filter, or "diffusion element" does not foul or plug off easily. Since the probe sensing cell is inserted entirely into the flue gas stream, the process gasses can diffuse (migrate) into the cell area with minimal fouling of the filter media. After many months or years of operation, however, the diffusion element may plug off. The operator at the DCS console may notice that the O_2 measurement is not as active as previously or that the speed of response back to the process (purge time) after calibration gases are removed has increased considerably. A new diffusion element will start to come back to the process value in 3-5 seconds ($T_{initial}$), and will be all the way back to the process reading in 30-40 seconds (T_{final}). As the diffuser plugs off over many months, these times will get longer and longer.

Another indication of a plugged diffuser is a large increase of the "cell constant" after a calibration. A slower speed of response not only delays O_2 information for the operator or the automatic O_2 trim control loop, it can also cause technicians to induce a calibration error while doing calibrations. Published specifications call for a 5 SCFH flow of calibration gases with a new diffuser. This slightly pressurizes the cell area with cal gas, ensuring that no flue gases mix in with the calibration test gasses. As the diffuser plugs off over time, the calibration flow rate will drop

and the cell area becomes increasingly more pressurized. Pressurizing the sensing cell during the calibration procedure will induce an error in the O_2 reading once the calibration gases are removed and pressures return to the normal operating duct pressures. The O_2 reading will be shifted lower by 1.5% of reading (not 1.5% O_2 , or 1.5% of full scale) for every 7 inches of water column pressure induced during the calibration.

The calibration induced error will be further increased if the calibration gas flow rate is adjusted to compensate for the reduced flow caused by the plugging diffuser. For example, an instrument technician may do a calibration on a probe with a badly plugged diffuser. He notices when he opens the bottle and sets his pressure regulator to 20 PSI that the flow meter is reading 2 SCFH instead of the normal 5 SCFH. He tries to readjust the flow rate on the flowmeter, but still cannot get the specified 5 SCFH, so he adjusts the pressure of the pressure regulator upward until he can get the 5 SCFH flow. This results in doing the calibration with a pressure on the cell, for example, of 2 PSI (approximately 56 inches of water column). When he removes his calibration gases, and the probe sensing cell returns to the normal duct pressure of -1 inch of water column, the probe will be reading low by approximately $0.5\% O_2$:

- 56 inches H₂O pressure during calibration = 12% of reading shift (56 in H₂O / 7 inH₂O x 1.5% = 12%)
- If normal process O₂ readings are 4% O2 then 4 x 0.12 = 0.48 % O2 shift downwards (3.52% O₂)

Although instruction manuals are clear in warning against this situation, it still occurs.

The new Plugged Diffuser Diagnostic in the 6888Xi electronics operates on the principle of measuring the "return to process" time during the calibration purge cycle (after the second calibration gas is removed). The return to process time measurement is used to calculate a diffuser response time (Diff T90) and to generate a warning to the user when the return to process time has exceeded 75% of the configured purge time. Default purge time is 300 seconds, but it's important for the user to configure the actual purge time for their process conditions. A purge time that is too long will prevent a plugged diffuser alarm from triggering until the diffuser pluggage is very bad. If the purge time is set too short, and probe has not fully returned to the process reading after the configured purge time expires, then the process reading will be in error due to test gas not being fully purged from the sensing cell area. As the diffuser becomes more plugged, the time to fully purge the sensing cell area of calibration test gas will increase.

The plugged diffuser feature works best with an automatic calibration system, where the probe electronics knows the exact timing of the solenoid gas switching. The diagnostic will also work for manual calibrations by detecting milivolt changes at the sensing cell during the stop gas phase of the calibration, when the second calibration gas has been disconnected.

In addition to providing a warning of possible diffuser pluggage, this feature can also be used to minimize the usage of calibration test gas and the time to perform a calibration. This capability is enabled by configuring the Auto Advance Cal parameter. When Auto Advance Cal is enabled, the plugged diffuser diagnostic will advance an automatic calibration when the readings for test gasses and the process measurement have become stable. By doing this, the amount of time that test gasses flow and purge are kept to a minimum.

The rate method is recommended for the plugged diffuser diagnostic. The rate method should work best for most applications, however if the diagnostic generates warnings with a new probe and/or diffuser, it may be necessary to switch the detection method to proximity.

By default, the Auto Advance Cal feature is disabled. Enabling Auto Advance Cal minimizes test gas useage and calibration time. When using the Auto Advance Cal feature, it is recommended

using the default settings for gas time and purge time configuration (300 seconds).

A "Diffuser Warning" alarm will be generated within the 6888Xi if the diagnostic detects a variety of problems related to measuring the "return to process" time. To determine the exact cause for the Diffuser Warning alarm it is necessary to look at the Diffuser Warn parameter. See the Parameter Descriptions for a description of all possible Diffuser Warning indications in the Diff Warn parameter.

The most important Diffuser Warning indication is "Diffuser Plugging" which is triggered if the time to return to process reaches greater than 75% of the configured purge time. If using the default purge time of 300 seconds, the warning will be generated when the plugging diffuser increases the actual purge time to 225 seconds. The purge time may be configured to a larger value if desired to stop the warning from occuring after future calibrations. Once the diffuser plugs enough to increase the actual purge time to 75% of the new configured value, the warning will start appearing again. Once the warning has occurred, it can be cleared by acknowledging the alarm. Note that if the configured purge time is set shorter than the actual purge time determined by the diagnostic, the Diffuser Warning indication will typically be "Purge End Premature."

Also note that the Diffuser Warning alarm will never cause the O_2 output signal to go to a "fail" condition (typically 3.5 mA).

The plugged diffuser diagnostic parameters are located in two separate locations in the 6888Xi menu.

- Setup parameters are located at: Menu\Detailed Setup\Calibration\Diffuser
- Diagnostic results parameters are located at: Menu\Calibration\Diffuser

Each parameter is described below:

Menu\Detailed Setup\Calibration\Diffuser\Plugged Diffuser

- **Disabled** The plugged diffuser diagnostic is disabled.
- **Rate** The plugged diffuser diagnostic is enabled with the rate mode algorithm. With this mode, the "returned to process" is indicated by the process reading having a small rate of change. This mode will function correctly even if the process is likely to be different at the end of the calibration than at the beginning. This is the default and recommended mode of operation.
- **Proximity** The plugged diffuser diagnostic is enabled with the proximity mode algorithm. With this mode, the "return to process" is indicated when the process reading returns close to the value that it had when the calibration was started. This mode will function correctly when the process reading is stable throughout the calibration.
- **Rate & Prox.** The plugged diffuser diagnostic is enabled with both Rate and Proximity mode algorithms. With this mode, the "return to process" is indicated when both the Rate and Proximity criteria are met.

Menu\Detailed Setup\Calibration\Diffuser\Auto Advance Cal

• Yes – Enables the Auto Advanace Cal option to sequence an automatic calibration system. If an automatic calibration system is used, test gases will be switched automatically once the readings settle out rather than waiting for the configured gas time to expire. If manual calibration gas switching is used, the technician will be prompted to switch gases. In either case, the purge time will be ended automatically once the process reading has settled rather than wait for the configured purge time to expire. • **No** – The Auto Advance Cal option is disabled. Test gas time and purge time will always follow the configured value.

Menu\Calibration\Diffuser\Diff Diagnostics

- **Process** This is the sensor voltage output value at the start of the calibration. For the "Proximity" and "Rate&Prox" modes of the plugged diffuser diagnostic algorithm, it will be used to determine when the sensor has returned to the process measurement.
- **O**₂ The real-time sensor voltage output value during calibration .
- **Step** The current step of the calibration process.
- **Step Time** The time remaining for the current calibration step.
- **Diag Step** The current step of the plugged diffuser diagnostic algorithm.
- **Init Response** The time for the Initial response of the cell after the calibration test gas is applied. Applies only when automatic calibration sequencing is utilized (as opposed to manually applying calibration test gasses).
- **Process Resp** Initial response back to the process after the calibration test gas is removed (Tinitial). Applies only when automatic calibration sequencing is utilized (as opposed to manually applying calibration test gasses).
- **Rtn Process** Return to process time (Tfinal) which is also the actual purge time. This may also be defined as the time it takes to get back to the initial "process" reading, or the time for the "rate" of the sensor output change to reach near zero, or both depending on which mode of the diagnostic has been enabled.
- **O2 Rate Change** The rate of change of the O₂ sensor output in mV/sec. This is used to determine when calibration test gasses and the process measurement have settled.

Menu\Calibration\Diffuser\Diff T90

• 90% of the Rtn Process time. This is a quantitative measure of the diffuser pluggage.

Menu\Calibration\Diffuser\Purge Time %

• The plugged diffuser diagnostic operates during the purge cycle (the time after the last calibration test gas is removed to give the process gas time to replace the calibration test gas in the sensing cell). Purge time % is the return to process time as a % of the configured Purge Time.

Menu\Calibration\Diffuser\Diff Warn

- None This Diff Warn result will not produce a Diffuser Warning alarm. This result indicates that the diffuser diagnostic has not detected anything to report to the user. This is also the result after a power on reset or after acknowledging the Diffuser Warning alarm.
- **Gas 1 no detect** Gas 1 was not detected at the sensing cell, indicating that Gas 1 is not flowing or the Gas 1 calibration test gas is very close to the actual process value.
- **Gas 2 no detect** Gas 2 was not detected at the sensing cell, possibly indicating that Gas 2 is not flowing (with a significantly plugged diffuser) or the Gas 2 calibration test gas value is nearly the same as Gas 1.
- Gas 1 unstable- The Gas 1 reading did not settle within the Gas Flow Time.
- **Gas 2 unstable** The Gas 2 reading did not settle within the Gas Flow Time.
- **Process No Detect** The process gas was not detected during the purge cycle, possibly indicating that Gas 2 is not flowing or the Gas 2 calibration test gas is very close to the

actual process value.

- **Purge End Premature** This indicates that the configured Purge Time expired prior to the diagnostic algorithm determining that the sensing cell is completely returned to the process reading. This would occur primarily with the Rate mode algorithm.
- **Fail Reach Process** This indicates that the configured Purge Time expired prior to the diagnostic algorithm reaching the process reading that was indicated at the start of the calibration. This would occur primarily with the Proximity mode algorithm.
- **Diffuser Plugging** This warning is generated when Purge Time % has reached 75% indicating a near term risk that the configured purge time could expire before the process value is reached after a calibration purge.
- **Constant Shifting** This indicates that the calibration constant is trending negative over an extended period of time which could also indicate that calibration test gas is causing excessive pressurization of the sensing cell during the calibration.

3.4 System Parameter Descriptions

Among the parameters available through the 6888Xi and 375/475 Field Communicator menus are a number of "System Parameters". The system parameters define variables that configure the 6888Xi in the transmitter system. System parameters are described in Table 3-4.

3.5 Probe Parameter Descriptions

Among the parameters available through the 6888Xi and 375/475 Field Communicator menus are a number of "Probe Parameters". The probe parameters define variables that configure a specific probe in the transmitter system. Probe parameters are described in Table 3-5.

3.6 Operation Via HART/AMS

The 375/475 Field Communicator is a handheld communications interface device. It provides a common communications link to all microprocesor-based instruments that are HART compatible. The handheld communicator contains a liquid crystal display (LCD) and 21 keys. A pocket-sized manual, included with the 375/475 Field Communicator, details the specific functions of all the keys.

The 375/475 Field Communicator accomplishes its task using a frequency shift keying (FSK) technique. With the use of FSK, high-frequency digital communication signals are superimposed on the 6888Xi's 4-20 mA current loop. The 375/475 Field Communicator does not disturb the 4-20 mA signal, since no net energy is added to the loop.

NOTE

The 375 Field Communicator must be upgraded to System Software 2.0 with Graphic License for operation with the 6888Xi. The AMS software must be upgraded to AMS 8.0 or above for operation with the 6888Xi.

Contact Emerson's Global Service Center (GSC) at 1-800-833-8314 to upgrade the 375 Field Communicator software to System Software 2.0 with Graphic License.

Table 3-4. System Parameters (1 of 3)

CPU	Parameter Name	Units	Description		
Y	Active Alarms		Current Alarms		
Y	Version		Software version number for the User Interface board		
Y	Build Num		Software build number for the User Interface board		
Y	Restart Count		Device restarts counter for the User Interface board		
Y	Tag		System Tag: Up to 8 characters long.		
Y	Num I/O Board		Number of I/O Board: 1 or 2. Default to 1 I/O board.		
Y	Probe Count		Number of probes per I/O board. Default to 1 probe per I/O board. Configure to more		
			than 1 probe per I/O board is reserved for future release.		
Y	Dev Type		Device Type. Default to 6888-O2.		
Y	One-Probe Format Line1, Center		Main display: Line 1 data for one probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp)		
Y	One-Probe Format Line2, Center		Main display: Line 2 data for one probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp)		
Y	One-Probe Format Line3, Left		Main display: Line 3 left hand side data for one probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) 2 displays TV (Cell Imp) 3 displays 4V (Cell mV) 4 displays CJC Temp 5 displays AO 6 displays OP Mode 7 displays Tag		
Y	One-Probe Format Line 3, Right		Main display: Line 3 right hand side data for one probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) 2 displays TV (Cell Imp) 3 displays 4V (Cell mV) 4 displays CJC Temp 5 displays AO 6 displays OP Mode 7 displays Tag		
Y	One-Probe Format Line4, Left		Main display: Line 4 left hand side data for one probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) 2 displays TV (Cell Imp) 3 displays 4V (Cell mV) 4 displays CJC Temp 5 displays AO 6 displays OP Mode 7 displays Tag		
Y	One-Probe Format Line4, Right		Main display: Line 4 right hand side data for one probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) 2 displays TV (Cell Imp) 3 displays 4V (Cell mV) 4 displays CJC Temp 5 displays AO 6 displays OP Mode 7 displays Tag		

Table 3-4. System Parameters (2 of 3)

CPU	Parameter Name	Units	Description			
Y	Two-Probe Format Line1, Center		Main display: Line 1 data for two probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) Line 1 & Line 3 are dedicated for probe 1 in a two probe configuration.			
Y	Two-Probe Format Line2, Center		Main display: Line 2 data for two probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) Line 2 & Line 4 are dedicated for probe 2 in a two probe configuration.			
Y	Two-Probe Format Line3, Left		Main display: Line 3 left hand side data for two probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) 2 displays TV (Cell Imp) 3 displays 4V (Cell mV) 4 displays CJC Temp 5 displays AO 6 displays OP Mode 7 displays Tag Line 1 & Line 3 are dedicated for probe 1 in a two probe configuration.			
Y	Two-Probe Format Line3, Right		Main display: Line 3 right hand side data for two probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) 2 displays TV (Cell Imp) 3 displays 4V (Cell mV) 4 displays CJC Temp 5 displays AO 6 displays OP Mode 7 displays Tag Line 1 & Line 3 are dedicated for probe 1 in a two probe configuration.			
Y	Two-Probe Format Line4, Left		Main display: Line 4 left hand side data for two probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) 2 displays TV (Cell Imp) 3 displays 4V (Cell mV) 4 displays CJC Temp 5 displays AO 6 displays OP Mode 7 displays Tag Line 2 & Line 4 are dedicated for probe 2 in a two probe configuration.			
Y	Two-Probe Format Liine4, Right		Main display: Line 4 right hand side data for two probe configuration: 0 displays PV (O ₂) 1 displays SV (O ₂ Temp) 2 displays TV (Cell Imp) 3 displays 4V (Cell mV) 4 displays CJC Temp 5 displays AO 6 displays OP Mode 7 displays Tag Line 2 & Line 4 are dedicated for probe 2 in a two probe configuration.			
Y	Revert Time	min	The period of time the display to revert back to the Main Display without button activity.			
Y	Language		Supported languages: 0 displays English 1 displays Spanish 2 displays German			

Table 3-4. Sv	vstem Parameters	(3 of 3)
		(

CPU	Parameter Name	Units	Description
Y	Contrast		Display contrast. (120-220)
Y	Password		Xi Password: 4 numeric characters.
Y	Enable Password		Enable password protection. (No/Yes)
Y	Flash Alarm		Turn off/on the flashing on the main display when alarms occurred. (No/Yes)
Ν	Version		I/O board software version.
Ν	Checksum		I/O board software checksum.
N	IOB SN		I/O board serial number. Use this number for licensed feature code generation.
N	Features		Available advanced licensed features for the I/O board. ON: Feature supported OFF: Feature not supported
Ν	Factory Mode		I/O board factory mode (Always OFF, internal use only)
N	Resource – Analog Output		I/O board analog output resource mapping. One for each probe: Index 0x00000001 contains IOB AO Index 0x00000002 contains TX AO
N	Resource - Auto Cal		I/O board auto calibration resource mapping. One for each probe: Index 0x00000100 means SPS Index 0x00000200 means IMPS
Ň	Resource - Relay 1		I/O board's relay 1 resource mapping. One for each probe: Index 0x00010000 indicates IOB RELAY 1
N	Resource - Relay 2		I/O board's relay 2 resource mapping. One for each probe: Index 0x02000000 indicates IOB RELAY 2

ΤХ	IOB	Parameter Name	Unit	Description
Y	Y	O ₂	%	Current oxygen concentration value (O ₂ %). The value should reflect the last good O ₂ value if it is in the "Lock" state during calibration.
Y	Y	O2 Temp	°C	Current O ₂ sensor temperature.
Y	Y	CJC Temp	°C	Current cold junction temperature.
N	Y	Board Temp	°C	Current electronic temperature measured at the I/O board.
Y	Y	O ₂ Cell	mV	Raw mV value for O_2 sensor.
N	Y	T/C Volt	mV	O ₂ T/C voltage.
Y	Y	Cell Imp	ohm	Cell impedance/sensor resistance measured.
Y	Y	Heater	V	Heater voltage.
N	Y	Bottle Pressure1	psi	Gas 1 bottle pressure. (Valid if device is configured for HSPS autocal.)
Ν	Y	Bottle Pressure2	psi	Gas 2 bottle pressure. (Valid if device is configured for HSPS autocal.)
N	Y	Cell Pressure1	in H2O	Cell pressure measured while applying gas 1. (Valid if device is configured for HSPS autocal.)
N	Y	Cell Pressure2	in H2O	Cell pressure measured while applying gas 2. (Valid if device is configured for HSPS autocal.)
Y	Y	O ₂ AO	mA	Analog output value represents the O_2 concentration measurement.
N	Y	O ₂ AO %	%	Analog output percentage for O_2 AO.
Y	Y	O ₂ Temp Max	°C	This is the highest O_2 sensor temperature reached since last reset.
Y	Y	O ₂ Temp Max Time	Days ago	Time stamp of the highest O_2 sensor temperature reached since last reset.
Y	Y	Temperature CJC Max	°C	This is the highest temperature reached at the cold junction since last reset.
Y	Y	Temperature CJC Max Time	Days ago	Time stamp of the highest temperature reached at the cold junction since last reset.
Ν	Y	Temperature Board Max	°C	This is the highest temperature reached at the IO board since last reset.
N	Y	Temperature Board Max Time	Days ago	Time stamp of the highest temperature reached at the IO board since last reset.
Y	Y	Voltage Heater Max	°C	This is the highest heater voltage reached since last reset.
Y	Y	Voltage Heater Max Time	Days ago	Time stamp of the highest heater voltage reached since last reset.
Y	Y	Voltage Cell Max	°C	This is the highest cell voltage reached since last reset.
Y	Y	Voltage Cell Max Time	Days ago	Time stamp of the highest cell voltage reached since last reset.
N	Y	Ramp Rate Heater Max	°C	This is the highest heater ramp rate reached since last reset.
Ν	Y	Ramp Rate Heater Max Time	Days ago	Time stamp of the highest heater ramp rate reached since last reset.
Y	Y	OP Mode		Device operating mode: PO=Power up; WU=Warm Up (analog output is railed); NM=Normal operation; CA=Calibrating (analog output can be tracking or locked at last good value based on "AO Tracks" configuration); AL=Alarm detected (recoverable); SF=Alarm detected (non-recoverable)
Y	Y	Active Alarms		Current Alarms (See Section 4, Troubleshooting)
Y	Y	Device		Alarm state
Y	Y	Failed		Alarm state: On/Off NV Memory Fail, Board Temp High, Factory Mode, Heater Ramp Rate

Table 3-5. Probe Parameters (1 of 4)

Table 3-5. Probe Parameters (2 of 4)

ΤХ	IOB	Parameter Name	Unit	Description	
Y	Y	Maintenance 1		Alarm state: On/Off O ₂ Sensor Open, O ₂ T/C Open, O ₂ Temp Low, O ₂ Temp High, O ₂ T/C Shorted, O ₂ T/C Reversed, Heater Failure, Burner Flameout	
Y	Y	Maintenance 2		Alarm state: On/Off Xmtr Disconnect, Cal Recommended, Cal Failed, Cell Imp High, Probe Mismatch	
Υ	Y	Advisory		Alarm state: Cal Changed, Htr Volt Low, Probe Changed, Low O2, Diffuser Warning	
Ν	Y	Previous Alarms		Previous Alarms (See Section 4, Troubleshooting)	
Ν	Y	Ack Alarm Time	Days ago	Time stamp of the previous alarms last acknowledged.	
Y	Y	Duty Cycle		O_2 heater duty cycle. Value between 0 and 1.	
Y	Y	O ₂ Temp SP	°C	PID temperature set point	
Y	Y	Heater Ramp Rate	°C/s	Heater ramp rate calculated in degree C per second.	
Y	Y	Operating Status		Device configuration: On/Off Factory Mode, Flame Status (IO Board DIP Switch setting), Auto Cal Device, Relay 1 Device, Relay 2 Device, AO Device	
N	Y	I/O States 1		I/O state: On/Off Gas 1 Solenoid, Gas 2 Solenoid	
N	Y	I/O States 2		I/O state: On/Off Flame Status In, Factory Mode, Relay1 Out, Relay2 Out, SPS/IMPS In, SPS/IMPS Out	
Y	Y	Xmtr EE Val		Transmitter board nonvolatile memory diagnostic.	
Ν	Y	IOB EE Val		I/O board nonvolatile memory diagnostic.	
Y	Y	Xmtr Restart		Software restarts count for the Transmitter.	
Ν	Y	IOB Restart		Software restarts count for the IO board.	
Y	Y	HART Device Rev		HART Device Revision number.	
Y	Y	Transmitter Version		Software version number for the Transmitter.	
Ν	Y	I/O Board Version		Software version number for the I/O board	
Y	Y	Tag		Device tag: Up to 8 characters long.	
Y	Y	Serial Number		Probe serial number.	
Y	Y	Device ID		Unique Device ID number. (HART)	
Y	Y	PV		Primary variable assignment: O ₂ (HART)	
Y	Y	SV		Secondary variable assignment: O ₂ Temp (HART)	
Y	Y	TV		Third variable assignment: Cell Imp (HART)	
Y	Y	4V		Fourth variable assignment: O ₂ Cell (HART)	
Ν	Y	Poll Address		I/O board polling address	
Y	Y	Xmtr Address		Transmitter board polling address	
N	Y	T90 Filter	sec	Analog output T90 time. It represents the time to take a step change in oxygen to reach 90% of the final value at the filter output.	
Ν	Y	Low O_2 Alm SP	%	Low O ₂ alarm threshold.	
N	Y	O ₂ Cell Ref	%	O ₂ sensor reference gas percentage. It allows using a sensor reference gas other than air. (Parameter for Programmable Reference feature.)	
N	Y	High Temp Alm SP	°C	High temperature alarm threshold. (Parameter for Extended Temperature feature.)	
N	Y	Heater SP		Heater set point. (Parameter for Extended Temperature feature.) 0 = Normal (736C), 1 = Low (550C)	

Table 3-5. Probe Parameters (3 of 4)

ТХ	IOB	Parameter Name	Unit	Description	
Ν	Y	Heater Latch Off		Heater latch Off. (Parameter for Extended Temperature feature.)	
				No = The heater will turn back on once the temperature falls	
				Yes = The heater will not turn back on once the temperature falls	
				below the heater set point	
N	Y	Features		Advanced software features:	
				0 = Stoichiometer, 1 = Prog Reference, 2 = Extended Temp, 4 = Diffuser Warning	
Y	Y	O ₂ LRV	%	Primary variable (O ₂ %) lower range value.	
Y	Y	O ₂ URV	%	Primary variable (O ₂ %) upper range value	
N	Y	AO Range		Analog output polarity: 0 = 4-20mA, 1 = 20-4mA	
Y	Y	Alarm Level		O2 alarm level: 0 = 3.5 mA, 1 = 21.1mA	
N	Y	Relay 1		Alarm Relay 1 mode: 0 = Unit alarm, 1 = Low O ₂ , 2 = Cal Recommended, 3 = In Calibration	
N	Y	Relay 2		Alarm Relay 2 mode: 0 = Unit alarm, 1 = Low O ₂ , 2 = Cal Recommended, 3 = In Calibration, 4 = Heater Relay (Default)	
Ν	Y	AO Track		Analog output track O_2 sensor measurement during a calibration: No/Yes	
Ν	Y	Tol Check		Enable/Disable tolerance check during calibration: No/Yes	
Ν	Y	Cal Recommend		Enable/Disable calibration recommended alarm: No/Yes	
N	Y	Cal Acknowledge		Enable/Disable calibration acknowledge before update calibration constants: No/Yes	
Y	Y	Cal Gas 1	%	Test Gas 1 value. This is the actual value of the gas being applied during the Test Gas 1 phase of a calibration.	
Y	Υ	Cal Gas 2	%	Test Gas 2 value. This is the actual value of the gas being applied during the Test Gas 2 phase of a calibration.	
Y	Y	Gas Time	sec	Test Gas application time. This is the length of time test gases are applied to the O_2 probe during low or high Test Gas phase of a calibration.	
Y	Y	Purge Time	sec	Test Gas purge time. This is the length of time before the output will be returned to the process reading after a calibration.	
N	Y	Plugged Diffuser		Enable Plugged Diffuser functionality: (Parameter for Diffuser Warning feature.) 0 = Disable, 1 = Rate, 2 = Proximity, 3 = Rate & Prox	
N	Y	Auto Advance Cal		Auto advance calibration state machine when it detects that the cell response has stabilized during test gas flow and purge: No/Yes (Parameter for Diffuser Warning feature.)	
Ν	Y	Enable Auto Cal		Enable/disable automatic calibration: No/Yes	
N	Y	Start on Cal Rec		Start automatic calibration on Cal Recommended state: No/Yes	
N	Y	Cal Interval	hr	Automatic calibration interval. The number 9999 disable the automatic timed calibration.	
N	Y	Next Cal Time	hr	Time remaining until the next automatic periodic calibration. The number 9999 disable the next automatic timed calibration.	
N	Y	Resource Analog Output		I/O board analog output resource mapping. One for each probe: 0x00000001 is for IOB AO 0x00000002 is for TX AO	
N	Y	Resource Auto Cal		I/O board auto calibration resource mapping. One for each probe: 0x00000100 is for SPS 0x0000200 is for IMPS	
N	Y	Resource Relay 1		I/O board's relay 1 resource mapping. One for each probe: 0x00010000 is for IOB RELAY 1	
N	Y	Resource Relay 2		I/O board's relay 2 resource mapping. One for each probe: 0x02000000 is for IOB RELAY 2	

Table 3-5. Probe Parameters (4 of 4)

TX	IOB	Parameter Name	Unit	Description	
Y	Y	Slope	mV/Dec	Current calibration slope. This is the slope value that was calculated as a result of the last successful calibration.	
Y	Y	Constant	mV	Current calibration constant. This is the constant value that was calculated as a result of the last successful calibration.	
Y	Y	Impedance	ohm	Cell Impedance. This is the sensor resistance that was calculated as a result of the last successful calibration.	
Y	Y	Time	Days ago	Time stamp of the last successful calibration.	
Y	Y	Cal Logs Slope	mV/Dec	Previous calibration slope. There are ten calibration results. 1 is the most recent and 10 is the least recent calibration slope	
Y	Y	Cal Logs Constant	mV	ration constant. There are ten calibration results. 1 is the most recent and 10 is the least recent calibration constant.	
Y	Y	Cal Logs Impedance	ohm	Previous Cell Impedance. This is the sensor resistance that was calculated as a result of previous successful calibration There are ten calibration results. Index 1 is the most recent and Index 10 is the least recent sensor resistance measured.	
Y	Y	Cal Logs Time	Days ago	Time stamp of the previous successful calibration. There are ten calibration time stamp. Index 1 is the most recent and Index 10 is the least recent time stamp.	
Ν	Y	Bad Slope	mV/Dec	Failed calibration slope.	
Ν	Y	Bad Constant	mV	Failed calibration constant.	
Y	Y	Cal Result		Calibration result: 0 = None, 1 = Success, 2 = Failed Constant, 3 = Failed Slope, 4 = Failed Temperature, 5 = Gas 1 Tolerance Error, 6 = Gas 2 Tolerance Error, 7-10 (future), 11 = AutoCal No Resp, 12 = AutoCal OutofSync, 13 = AutoCal Abort, 14 = No Solenoid, 15 = WarmUp Abort, 16 Alarm Abort	
Ν	Y	Delta Imp		Delta impedance since last calibration.	
N	Y	Cal Step		This represents the step of the calibration cycle is in: 0 = Idle, 1 = Reserved, 2 = Apply Gas 1, 3 = Flow Gas 1, 4 = Read Gas 1, 5 = Apply Gas 2, 6 = Flow Gas 2, 7 = Read Gas 2, 8 = Cal Abort, 9 = Stop Gas, 10 = Purge	
Ν	Y	Time Remain	sec	Time remaining in the present calibration cycle state.	
N	Y	Process	mV	Cell mV reading just prior to start of calibration. (Diagnostic parameter for Diffuser Warning feature.)	
N	Y	Diag State		The state of the Diffuser Warning state machine: (Diagnostic parameter for Diffuser Warning feature.) 0 = Idle, 1 = Wait Gas 1, 2 = Stable Gas 1, 3 = Read Gas 1, 4 = Wait Gas 2, 5 = Stable Gas 2, 6 = Read Gas 2, 7 = Wait Process, 8 = Rtn Process	
N	Y	Init Resp	sec	The time it takes for the first calibration test gas to reach the sensor cell after the solenoid is energized. (Diagnostic parameter for Diffuser Warning feature.)	
N	Y	Process Resp	sec	The time it takes to see the initial response of the process after the gas 2 sole- noid is turned off. (Diagnostic parameter for Diffuser Warning feature.)	
N	Y	Rtn Process	sec	The time it takes from the initial response of the process until the process value has stabilized close to the value of the process when the calibration started. (Diagnostic parameter for Diffuser Warning feature.)	
N	Y	O2 Rate Change	mV/s	The O ₂ cell mV rate of change. (Diagnostic parameter for Diffuser Warning feature.)	
N	Y	Diff T90	sec	The time it takes from the gas-2 solenoid is turned off to return to 90% of the process when the calibration started. (Diagnostic parameter for Diffuser Warning feature.)	
Ν	Y	Purge Time %	%	The percent of purge time used. This parameter can be used to estimate amount of diffuser pluggage. (Diagnostic parameter for Diffuser Warning feature.)	
N	Y	Diff Warn		The reason of the Diffuser Warning alarm: (Diagnostic parameter for Diffuser Warning feature.) 0 = None, 1 = Gas 1 No Detect, 2 = Gas 2 No Detect, 3 = Gas 1 Unstable, 4 = Gas 2 Unstable, 5 = Process No Detect, 6 = Purge End Premature, 7 = Fail Reach Process, 8 = Diffuser Plugging, 9 = Constant Shifting	

FIGURE 3-5. 375/475 Field Communicator Connection at the 6888Xi

3.6.1 Field Communicator Signal Line Connections

When working at the 6888Xi, the 375/475 Field Communicator can be connected directly to test points TP21 and TP22 on the 6888Xi I/O Board as shown in Figure 3-5. The AM+ and AMtest points are provided to monitor the 4-20 mA signal without breaking into the loop.

3.6.2 Field Communicator Menu Trees

Connect the 375/475 Field Communicator in the 6888Xi (6888Xi-to-DCS) 4-20 mA signal loop or to the 6888Xi terminals as shown in Figure 3-5 and refer to Figure 3-6 for the 375/475 Field Communicator 6888Xi menu tree.

3.7 Parameter Setup

Test Gas Values 3.7.1

Use a Field Communicator or the 6888Xi to set test gas values for calibration.

When using the 6888Xi with an SPS4001B or IMPS the test gas values for Gas 1 and Gas 2 correspond with Lo Gas and Hi Gas, respectively. Care must be taken to ensure the test gas values are properly matched and the test gases are plumbed correctly to the SPS4001B or IMPS. Failure to do so may cause errors on the calibration serquence or trigger an error if tolerance check is set on.

A 6888Xi shipped from the factory has test gas values for low and high set to 0.4% and 8.0% respectively. This same process must be performed any time an I/O Board is replaced.

FIGURE 3-6. 375/475 Field Communicator 6888Xi Menu Tree (Sheet 1 of 4)

FIGURE 3-6. 375/475 Field Communicator 6888Xi Menu Tree (Sheet 3 of 4)

FIGURE 3-6. 375/475 Field Communicator 6888Xi Menu Tree (Sheet 3 of 4)

Setting Test Gas Values Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select CALIBRATION then press ENTER.
- 4. From the CALIBRATION menu, select CAL GAS 1 then press ENTER.
- 5. Press the RIGHT arrow key to edit the value. Use the RIGHT and LEFT arrow keys to select the digit to edit, then the UP and DOWN arrow keys to change the value of the digit. Press ENTER to save the new value. Press the LEFT arrow key to return to the CALIBRATION menu.
- 6. From the CALIBRATION menu, select CAL GAS 2 then press ENTER. Repeat step 5 for calibration gas 2.
- 7. Press the EXIT key to return to the main menu.
- 8. Repeat steps 1 through 7 for PROBE 2 if configured for dual channel.

Setting Test Gas Values Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select CALIBRATION.
- 5. From the CALIBRATION menu, select GAS 1.
- 6. Press the RIGHT arrow key to edit the gas value.
- 7. Use the stylus on the screen to enter the new gas value then press ENTER when finished.
- 8. Use the stylus on the screen to select SEND to update the 6888Xi.
- 9. Repeat steps 5 through 8 for GAS 2.

3.7.2 Test Gas Times

Use a Field Communicator or the 6888Xi to set test gas flow time and purge time for calibration.

A 6888Xi shipped from the factory has test gas flow time and purge time set to 300 seconds. This same process must be performed any time an I/O Board is replaced.

Setting Test Gas Times Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select CALIBRATION then press ENTER.
- 4. From the CALIBRATION menu, select GAS TIME then press ENTER.
- 5. Press the RIGHT arrow key to edit the value. Use the RIGHT and LEFT arrow keys to select the digit to edit, then the UP and DOWN arrow keys to change the value of the digit. Press ENTER to save the new value. Press the LEFT arrow key to return to the CALIBRATION menu.
- 6. From the CALIBRATION menu, select PURGE TIME then press ENTER. Repeat step 5 for purge time 2.
- 7. Press the EXIT key to return to the main menu.
- 8. Repeat steps 1 through 7 for PROBE 2 if configured for dual channel.

Setting Test Gas Times Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select CALIBRATION.
- 5. From the CALIBRATION menu, select GAS TIME.

- 6. Press the RIGHT arrow key to edit the gas value.
- 7. Use the stylus on the screen keypad to enter the new gas value then press ENTER when finished.
- 8. Use the stylus on the screen to select SEND to update the 6888Xi.
- 9. From the CALIBRATION menu, select PURGE TIME.
- 10. Press the RIGHT arrow key to edit the gas value.
- 11. Use the stylus on the screen to enter the new gas value then press ENTER when finished.
- 12. Use the stylus on the screen to select SEND to update the 6888Xi.

3.7.3 Output Tracking During Calibration

Use a Field Communicator or the 6888Xi to set how the analog output value will function during calibration.

A 6888Xi shipped from the factory has the output tracking set to No, i.e. the analog output will hold the last value during the calibration cycle. This same process must be performed any time an I/O Board is replaced.

Setting Output Tracking Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select CALIBRATION then press ENTER.
- 4. From the CALIBRATION menu, select AO TRACK then press ENTER.
- 5. Press the RIGHT arrow key to edit the value.

No – The analog output will hold the last value during calibration

Yes – The analog output will track the actual measurement during calibration Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to save the new value. Press the LEFT arrow key to return to the CALIBRATION menu.

- 6. Press the EXIT key to return to the main menu.
- 7. Repeat steps 1 through 6 for PROBE 2 if configured for dual channel.

Setting Output Tracking Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select CALIBRATION.
- 5. From the CALIBRATION menu, select ANALOG OUTPUT TRACK.
- 6. Press the RIGHT arrow key to change the value from NO to YES or YES to NO.
 - No The analog output will hold the last value during calibration
 - Yes The analog output will track the actual measurement during calibration
- 7. Use the stylus on the screen to press ENTER when finished.
- 8. Use the stylus on the screen to select SEND to update the 6888Xi.

3.7.4 Tolerance Check

Use a Field Communicator or the 6888Xi to set whether or not the measured calibration gas value is validated against the programmed value. If configured Yes, the 6888Xi will create an alarm if the measured value varies more than $\pm 10\%$ from the programmed value. Also, when configured Yes, the 6888 must be calibrated using calibration gas 1 first then calibration gas 2 second and the gas values must be set properly.

When using the 6888Xi with an SPS4001B or IMPS the test gas values for Gas 1 and Gas 2 corre-

spond with Lo Gas and Hi Gas, respectively. Care must be taken to ensure the test gas values are properly matched and the test gases are plumbed correctly to the SPS4001B or IMPS. Failure to do so may cause errors on the calibration serquence or trigger an error if tolerance check is set on.

A 6888Xi shipped from the factory has the tolerance check set to No. This same process must be performed any time an I/O Board is replaced.

Setting Tolerance Check Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select CALIBRATION then press ENTER.
- 4. From the CALIBRATION menu, select TOL CHECK then press ENTER.
- 5. Press the RIGHT arrow key to edit the value.
 - No Tolerance Check active
 - Yes Tolerance Check inactive

Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to save the new value. Press the LEFT arrow key to return to the CALIBRATION menu.

- 6. Press the EXIT key to return to the main menu.
- 7. Repeat steps 1 through 6 for PROBE 2 if configured for dual channel.

Setting Tolerance Check Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select CALIBRATION.
- 5. From the CALIBRATION menu, select TOLERANCE CHECK.
- 6. Press the RIGHT arrow key to change the value from NO to YES or YES to NO.
 - No Tolerance Check active

Yes – Tolerance Check inactive

Use the stylus on the screen to press ENTER when finished.

7. Use the stylus on the screen to select SEND to update the 6888Xi.

3.7.5 Alarm Relay Output Configuration

The 6888Xi has two dry contact Form-C alarm relay output signals that can be configured in multiple modes through the 6888Xi keypad display or the 375/475 Field Communicator. A list of modes is shown in Table 3-3. Each alarm relay output can be configured separately and one or all modes can be turned on in any combination.

Mode	Configuration
No Alarm	All modes set to OFF
Unit Alarm	The alarm output is configured for a Unit Alarm (i.e. any alarm that affects heater operation). These alarms are non-recoverable and require a power cycle or service to clear
Low O2	The alarm output is configured for Low O ₂ Alarm
Cal Recommended	The alarm output is configured for a Calibration Recommended Alarm
In Calibration	The alarm output is configured for an In Calibration indication
Heater Relay	The alarm output is configured for Flame Safety Interlock

Table 3-3 - Alarm Relay Output Configurations

If the 6888Xi is configured with the optional Flame Safety Interlock or for Traditional Architecture, Alarm 2 is preconfigured with "Heater Relay" and prewired to either the AC Relay Board or DR Board. In this condition the relay configuration cannot be changed to any other setting. If changes are attempted to be made, the 6888Xi will respond with an "Access Restricted" warning. If the 6888Xi is not configured with the optional Flame Safety Interlock, "Heater Relay" is not valid and cannot be chosen for Alarm 2.

Configuring the Alarm Relays Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select RELAY then press ENTER.
- 4. From the RELAY menu, select RELAY 1 then press ENTER.
- From the RELAY 1 menu, use the UP and DOWN arrow keys to select the mode and the ENTER key to toggle the value from ON to OFF or OFF to ON. Relay modes are as follows: Unit Alarm

Low O₂

Cal Recommended

In Calibration

- 6. Press ENTER key to accept settings. When questioned, use the UP and DOWN arrow keys to select YES or NO to save configuration. Press ENTER to continue.
- 7. From the RELAY menu, select RELAY 2 then press ENTER.
- 8. From the RELAY 2 menu, use the UP and DOWN arrow keys to select the mode and the ENTER key to toggle the value from ON to OFF or OFF to ON. Relay modes are as follows: **Unit Alarm**

Low O₂

Cal Recommended

In Calibration

Heater Relay

- 9. Press LEFT arrow key. When questioned, use the UP and DOWN arrow keys to select YES or NO to save configuration. Press ENTER to continue.
- 10. Press the EXIT key to return to the main menu.
- 11. Repeat steps 1 through 10 for PROBE 2 if configured for dual channel.

Configuring the Alarm Relays Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select RELAY.
- 5. From the RELAY menu, select RELAY 1.
- 6. From the RELAY 1 menu, use the stylus on the screen to select the mode then either the ON or OFF buttons. Relay modes are as follows:

Unit Alarm

Low O₂

Cal Recommended

In Calibration

- Use the stylus on the screen to select ENTER, then SEND to update the 6888Xi.
- 7. From the RELAY menu, select RELAY 2.

 From the RELAY 2 menu, use the stylus on the screen to select the mode then either the ON or OFF buttons. Relay modes are as follows: Unit Alarm

Low O₂

Cal Recommended

In Calibration

Heater Relay

Use the stylus on the screen to select ENTER, then SEND to update the 6888Xi.

3.7.6 Analog Output Configuration

The analog output signal from the 6888Xi can be configured for the 4-20 mA range and fault condition.

A 6888Xi shipped from the factory has the analog outputs set to a 4 to 20 mA range with a 3.5 mA alarm level. This same process must be performed any time an I/O Board is replaced.

Configuring the Analog Output Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select ANALOG OUTPUT then press ENTER.
- 4. From the ANALOG OUTPUT menu, select from the following parameters then press ENTER:
 O2 LRV O2 value at lower analog output value (0 mA or 4 mA)
 O2 URV O2 value at upper analog output value (20 mA)
 AO Range Range of analog output (0-20 mA or 4-20 mA)
 Alarm Level O2 alarm level (3.5 mA or 21.1 mA)
- 5. Press the RIGHT arrow key to edit the value. Use the RIGHT and LEFT arrow keys to select the digit to edit, then the UP and DOWN arrow keys to change the value of the digit. Press ENTER to save the new value. Press the LEFT arrow key to return to the ANALOG OUTPUT menu.
- 6. Press the EXIT key to return to the main menu.
- 7. Repeat steps 1 through 6 for PROBE 2 if configured for dual channel.

Configuring the Analog Output Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select ANALOG OUTPUT.
- From the ANALOG OUTPUT menu, select from the following parameters then press ENTER:
 O₂ LRV O₂ value at lower analog output value (0 mA or 4 mA)

O₂ URV – O₂ value at upper analog output value (20 mA)

Output Range – Range of analog output (0-20 mA or 4-20 mA)

Alarm Level – O₂ alarm level (3.5 mA or 21.1 mA)

- 6. Use the stylus on the screen keypad to enter the value then press ENTER when finished.
- 7. Use the stylus on the screen to select SEND to update the 6888Xi.

3.7.7 Autocalibration

If autocalibration is desired, the 6888Xi must be used with either an SPS 4001B or IMPS 4000. The 6888Xi must be properly configured before autocalibration can take place. Refer to the applicable SPS 4001B or IMPS 4000 instruction manual for details on performing autocalibration. Refer to this section for details on manual calibration procedures.

A 6888Xi is shipped from the factory without autocalibration configured. This same process must be performed any time an I/O Board is replaced.

Activating the Autocalibration Menu if not available

- 1. Apply power to 6888XI.
- 2. Press MENU until the "System" menu appears.
- 3. Select CONFIGURE IOB.
- 4. Press the ENTER key to continue.
- 5. Select I/O BOARD 1. (Note: With a dual channel 6888XI, either or both I/O boards may be reset and reconfigured.)
- 6. Press the ENTER key to continue.
- 7. Select RESET I/O BOARD. Press the ENTER key to continue.
- 8. When the reset menu appears, select FACTORY DEFAULTS. Press the ENTER key to continue.
- 9. At the SENSOR TYPE screen, select O₂. Do not select CO as this option is reserved for future use. Press the ENTER key to continue.
- 10. At the DEVICE TYPE screen, select HART or FF (FOUNDATION Fieldbus), whichever applies.
- 11. At the AUTO CAL DEVICE screen, use the Up/Down keys to select the calibration method to be used.

The methods are defined as follows:

- 1. None Manual calibration with the standard probe housing configuration
- 2. **SPS** Automatic calibration with the standard probe housing configuration using the SPS4001B
- 3. **IMPS** Automatic calibration with the standard probe housing configuration using the IMPS
- 4. **Integral** Automatic calibration with the 6888A integral autocal probe housing configuration

Configuring Autocalibration Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select AUTO CALIBRATION then press ENTER.
- 4. From the AUTO CALIBRATION menu, select ENABLE AUTO CAL then press ENTER.
- 5. Press the RIGHT arrow key to edit the value. Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to save the new value. Press the LEFT arrow key to return to the AUTO CALIBRATION menu.
- 6. Press the EXIT key to return to the main menu.
- 7. Repeat steps 1 through 6 for PROBE 2 if configured for dual channel.

Configuring Autocalibration Using Field Communicator

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select AUTO CALIBRATION.

- 5. From the AUTO CALIBRATION menu, select the ENABLE AUTOCAL parameter.
- 6. Press the RIGHT arrow key to edit. Use the stylus on the screen keypad to select YES or NO then press ENTER when finished.
- 7. Use the stylus on the screen to select SEND to update the 6888Xi.

3.7.8 Calibration Recommended

The 6888Xi can be configured whether or not to annunciate a calibration recommended alarm. This alarm advises the user that the calibration is out of date and should be recalibrated.

A 6888Xi is shipped from the factory with the calibration recommended alarm enabled. This same process must be performed any time an I/O Board is replaced.

Configuring Calibration Recommended Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select CALIBRATION then press ENTER.
- 4. From the CALIBRATION menu, select CAL RECOMMENDED then press ENTER.
- 5. Press the RIGHT arrow key to edit the value. Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to save the new value. Press the LEFT arrow key to return to the CALIBRATION menu.
- 6. Press the EXIT key to return to the main menu.
- 7. Repeat steps 1 through 6 for PROBE 2 if configured for dual channel.

Configuring Calibration Recommended Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select AUTO CALIBRATION.
- 5. From the AUTO CALIBRATION menu, select the START ON CAL REC parameter.
- 6. Press the RIGHT arrow key to edit. Use the stylus on the screen keypad to select YES or NO then press ENTER when finished.
- 7. Use the stylus on the screen to select SEND to update the 6888Xi.

3.7.9 Calibration Acklowledged

The 6888Xi can be configured whether or not to allow the user to not accept a calibration.

A 6888Xi is shipped from the factory with the calibration acknowledged alarm disabled. This same process must be performed any time an I/O Board is replaced.

Configuring Calibration Acknowledged Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select CALIBRATION then press ENTER.
- 4. From the CALIBRATION menu, select CAL ACKNOWLEDGE then press ENTER.
- 5. Press the RIGHT arrow key to edit the value. Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to save the new value. Press the LEFT arrow key to return to the CALIBRATION menu.
- 6. Press the EXIT key to return to the main menu.
- 7. Repeat steps 1 through 6 for PROBE 2 if configured for dual channel.

Configuring Calibration Acknowledged Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select CALIBRATION.
- 5. From the CALIBRATION menu, select the CAL ACKNOWLEDGE parameter.
- 6. Press the RIGHT arrow key to edit. Use the stylus on the screen keypad to select YES or NO then press ENTER when finished.
- 7. Use the stylus on the screen to select SEND to update the 6888Xi.

3.7.10 Plugged Diffuser Diagnostic

Use a Field Communicator or the 6888Xi to configure the plugged diffuser diagnostic.

The Plugged Diffuser Diagnostic setups are only valid if the 6888Xi is configured with the Plugged Diffuser Enhanced Software Option. If the Option is not enabled in the 6888Xi, the setup selections will not appear in the menu.

A 6888Xi shipped from the factory with the Plugged Diffuser Enhanced Software Option configured will initially have the feature disabled. This same process must be performed any time an I/O Board is replaced.

Configuring the Plugged Diffuser Diagnostic Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select CALIBRATION then press ENTER.
- 4. From the CALIBRATION menu, select DIFFUSER then press ENTER.
- 5. From the DIFFUSER menu, select PLUGGED DIFFUSER then press ENTER.
- 6. Use the UP and DOWN arrow keys to select the mode.
 - Disable Disables this feature

Rate – Uses rate of change of gas value during purge to determine when purge is complete **Proximity** – Uses comparison of pre-calibration measurement versus post-calibration measurement purge to determine when purge is complete

Rate&Prox – Uses both methods to determine when purge is complete (e.g. both must be true)

Press ENTER to save the selection. Press the LEFT arrow key to return to the CALIBRATION menu.

- 7. From the CALIBRATION menu, select AUTO ADVANCE CAL then press ENTER.
- 8. Press the RIGHT arrow key to edit the value.
 - No Disables the function

Yes – Shortens cal gas flow time or purge time if the measured gas value stabilized before the manually configured times

Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to save the new value. Press the LEFT arrow key to return to the CALIBRATION menu.

- 9. Press the EXIT key to return to the main menu.
- 10. Repeat steps 1 through 9 for PROBE 2 if configured for dual channel

Configuring the Plugged Diffuser Diagnostic Using Field Communicator in Manual Configure Mode

1. Use the 375/475 Field Communicator to access the main HART menu.

- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select CALIBRATION.
- 5. From the CALIBRATION menu, select DIFFUSER.
- 6. From the DIFFUSER menu, select PLUGGED DIFFUSER.
- 7. Press the RIGHT arrow key to edit the value. Use the UP and DOWN arrow keys to select the mode.

Disable – Disables this feature

Rate – Uses rate of change of gas value during purge to determine when purge is complete **Proximity** – Uses comparison of pre-calibration measurement versus post-calibration measurement purgeto determine when purge is complete

Rate&Prox – Uses both methods to determine when purge is complete (e.g. both must be true)

- 8. Use the stylus on the screen keypad to press ENTER when finished.
- 9. Use the stylus on the screen to select SEND to update the 6888Xi.
- 8. From the DIFFUSER menu, select AUTO ADVANCE CAL.
- 9. Press the RIGHT arrow key to edit the value. Use the UP and DOWN arrow keys to select the mode.
 - **No** Disables the function

Yes – Shortens cal gas flow time or purge time if the measured gas value stabilized before the manually configured times

- 10. Use the stylus on the screen keypad to press ENTER when finished.
- 11. Use the stylus on the screen to select SEND to update the 6888Xi.

3.7.11 Low Temperature Set Point

Use a Field Communicator or the 6888Xi to configure the low temperature setpoint.

The Low Temperature Set Point setups are only valid if the 6888Xi is configured with the Extended Temperature Enhanced Software Option. If the Option is not enabled in the 6888Xi, the setup selections will not appear in the menu.

A 6888Xi shipped from the factory with the Extended Temperature Enhanced Software Option configured will initially have the heater set to normal and the heater latch off set to off. This same process must be performed any time an I/O Board is replaced.

Configuring the Low Temperature Set Point Using the 6888Xi Keypad/Display

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DETAILED SETUP then press ENTER.
- 3. From the DETAILED SETUP menu, select SENSOR then press ENTER.
- 4. From the SENSOR menu, select HEATER SP then press ENTER.
- 5. Press the RIGHT arrow key to edit the value.

Normal – Heater set point at 736 °C

Low – Heater set point at 550 °C

Use the UP and DOWN arrow keys to select the mode. Press ENTER to save the new value. Press the LEFT arrow key to return to the SENSOR menu.

- 6. From the SENSOR menu, select HIGH TEMP ALM SP then press ENTER.
- 7. Press the RIGHT arrow key to edit the value. Use the RIGHT and LEFT arrow keys to select the digit to edit, the the UP and DOWN arrow keys to change the value of the digit. The value must be between 750 °C and 850 °C. Press ENTER to save the new value. Press the LEFT arrow key to return to the SENSOR menu.

- 8. From the SENSOR menu, select HEATER LATCH OFF then press ENTER.
- 9. Press the RIGHT arrow key to edit the value.
 - No Heater turns off above set point, then turns back on if process falls below set point
 - Yes Heater turns off above set point, but does not then turn back on if process falls below set point

Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to save the new value. Press the LEFT arrow key to return to the SENSOR menu.

- 10. Press the EXIT key to return to the main menu.
- 11. Repeat steps 1 through 8 for PROBE 2 if configured for dual channel.

Configuring the Low Temperature Set Point Using Field Communicator in Manual Configure Mode

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select MANUAL SETUP.
- 4. From the MANUAL SETUP menu, select SENSOR.
- 5. From the SENSOR menu, select HEATER SET POINT.
- 6. Press the RIGHT arrow key to edit the value. Use the UP and DOWN arrow keys to select the mode.

Normal – Heater set point at 736 °C **Low** – Heater set point at 550 °C

- 7. Use the stylus on the screen keypad to press ENTER when finished.
- 8. Use the stylus on the screen to select SEND to update the 6888Xi.
- 9. From the SENSOR menu, select HIGH TEMP ALM SP.
- 10. Use the stylus on the screen keypad to tenter the high temperature alarm set point value. The value must be 750 °C and 850 °C. Press ENTER when finished.
- 11. Use the stylus on the screen to select SEND to update the 6888Xi
- 12. From the SENSOR menu, select HEATER LATCH OFF.
- 13. Press the RIGHT arrow key to edit the value. Use the UP and DOWN arrow keys to select the mode.
 - No Heater turns off above set point, then turns back on if process falls below set point
 - Yes Heater turns off above set point, but does not then turn back on if process falls below set point
- 14. Use the stylus on the screen keypad to press ENTER when finished.
- 15. Use the stylus on the screen to select SEND to update the 6888Xi.

3.8 Calibration

3.8.1 General

New O_2 cells may operate for more than a year without requiring calibration, but older cells may require recalibration every few weeks as they near the end of their life.

A CALIBRATION RECOMMENDED alarm provides notice of when a calibration is required. This strategy ensures that the O₂ reading is always accurate and eliminates many unnecessary calibrations based on calendar days or weeks since previous calibration.

The O_2 Probe(s) can be calibrated manually through the handheld 375/475 Field Communicator or the 6888Xi. Fully automatic calibration can be performed automatically using the 6888Xi and the SPS 4001B Single Probe Autocalibration Sequencer or the IMPS 4000 Intelligent Multiprobe Sequencer.

FIGURE 3-7. Calibration Methods, Simplified

3.8.2 Calibration Procedure

This section covers manual calibration. For automatic calibration details see the Instruction Manual for the SPS 4001B Single Probe Autocalibration Sequencer or the IMPS 4000 Intelligent Multiprobe Test Gas Sequencer.

Calibration can be performed using two basic calibration methods. The methods available to you for use depend on the configuration of your system. The paragraphs that follow describe how to perform a calibration for the configurations shown in Figure 3-7.

Setup of the calibration parameters should be performed before the first O_2 calibration. Thereafter, perform calibration setup only as needed to change the calibration parameters or to reset the parameters following the replacement of primary system components.

When performing a calibration, certain settings will cause specific actions to occur. If calibration

WARNING

Failure to remove the 6888Xi from automatic control loops prior to performing this procedure may result in a dangerous operating condition.

acknowledge is set to yes, each calibration will generate an alarm condition that requires the operator to decide whether or not to accept the new calibration. The 6888XI will continue to function after the calibration completes, but the new slope and constant will not be implemented until accepted. If the 6888XI has the diffuser warning function activated, a diffuser warning alarm may occur after a calibration. If an alarm occurs, it will need to be acknowledged and the associated parameters need to be reviewed to determine if there is any significant fouling of the diffuser.

O₂ Calibration with 6888Xi

For systems with configuration 1, shown in Figure 3-5, use the following procedure to perform a calibration using the 6888Xi. If necessary, use the 6888Xi menu tree in Figure 3-2 for reference.Multiprobe Test Gas Sequencer.

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select CALIBRATION then press ENTER.
- 3. From the CALIBRATION menu, select O2 CALIBRATION then press ENTER.
- 4. In the first screen, a "Ctrl Loop to Manual" warning occurs. Remove the 6888XI from any automatic controls loops to avoid a potentially dangerous operating condition. Press ENTER when ready to start calibration.
- 5. Follow the prompts on the 6888XI display to perform the calibration.
- 6. The STOP GAS 2 step screen just prior to the purge step will display the calibration result. In the event the calibration cycle fails, the reason will be displayed here as well. The calibration results are described as follows:

Success – Calibration completed successfully.

Failed Constant – The calculated calibration constant is outside the range of ±20.00.

Failed Slope – The calculated calibration slope is outside the range of 34.5 to 57.5.

Failed Temperature – With the extended temperature function enabled and the operating above the heater set point, the process temperature varied by more than $\pm 5^{\circ}$ C during the calibration cycle.

Gas 1 Tolerance Error – The measured value for gas 1 varied more than $\pm 10\%$ from the programmed value. Possible causes are incorrect gas value programmed in the 6888XI, incorrect gas value in bottle, or gas bottle is empty. This error can occur only if the Tolerance Check feature is active.

Gas 2 Tolerance Error – The measured value for gas 2 varied more than $\pm 10\%$ from the programmed value. Possible causes are incorrect gas value programmed in the 6888XI, incorrect gas value in bottle, or gas bottle is empty. This error can occur only if the Tolerance Check feature is active.

AutoCal No Resp – No communication or loss of communication to the SPS4001B or IMPS.

AutoCal OutofSync – Loss of communication synchronization to the SPS4001B or IMPS.

AutoCal Abort – The SPS4001B or IMPS aborted the calibration cycle due to a low gas bottle indication.

WarmUp Abort – Attempted to perform a calibration during warmup.

Alarm Abort – Another alarm occurred and caused the calibration cycle to abort.

In the event of a calibration failure, perform the following steps. Otherwise, proceed to the next step.

- a. From the final calibration screen, press EXIT twice to return to the main display screen. The screen should indicate an alarm condition.
- b. Press DIAG to view the alarms. A CAL FAILED alarm should be shown.
- c. Press EXIT to return to the DIAGNOSTIC menu.
- d. From the DIAGNOSTIC menu, select ACKNOWLEDGE ALARMS then press ENTER.
- e. From the ACKNOWLEDGE ALARMS menu, select ACK CAL FAILED then press ENTER.
- f. When complete, press EXIT twice to return to the main display screen.
- g. Press DIAG to verify the CAL FAILED alarm no longer is shown.
- 7. If the Calibration Acknowledge parameter is ON, perform the following steps. Otherwise, proceed to the next step.
 - a. From the final calibration screen, press EXIT twice to return to the main display screen. The screen should indicate an alarm condition.
 - b. Press DIAG to view the alarms. A CAL CHANGED alarm should be shown.
 - c. Press EXIT to return to the DIAGNOSTIC menu.
 - d. From the DIAGNOSTIC menu, select ACKNOWLEDGE ALARMS then press ENTER.
 - e. From the ACKNOWLEDGE ALARMS menu, select ACK CALIBRATION then press ENTER.
- f. In this screen, a "Ctrl Loop to Manual" warning occurs. Remove the 6888XI from any automatic controls loops to avoid a potentially dangerous operating condition. Press ENTER when ready to continue.
- g. The next screen shows the CURRENT CAL and NEW CAL slope and constant values. Press ENTER to continue.
- h. Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to continue. Press EXIT twice to return to the main display screen.
- i. Press DIAG to verify the CAL CHANGED alarm no longer is shown.
- 8. If the Diffuser Warning Function is active, perform the following steps. Otherwise, proceed to the next step.
 - a. From the final calibration screen, press EXIT twice to return to the main display screen. The screen should indicate an alarm condition.
 - b. Press DIAG to view the alarms. A DIFFUSER WARNING alarm should be shown.
 - c. Press EXIT to return to the DIAGNOSTIC menu.
 - d. From the DIAGNOSTIC menu, select ACKNOWLEDGE ALARMS then press ENTER.
 - e. From the ACKNOWLEDGE ALARMS menu, select ACK DIFF WARN then press ENTER.
 - f. When complete, press EXIT twice to return to the main display screen.
 - g. Press DIAG to verify the DIFFUSER WARNING alarm no longer is shown.
- 9. Repeat steps 1 through 5 for PROBE 2 if configured for dual channel.

Aborting O₂ Calibration with 6888Xi

- 1. From the calibration prompt screen, press the LEFT arrow key to return to the CALIBRATION menu.
- 2. From the CALIBRATION menu, select ABORT CALIBRATION then press ENTER.
- 3. At the prompt, select ENTER to verify the abort command.

Failure to remove the 6888Xi from automatic control loops prior to performing this procedure may result in a dangerous operating condition.

- 4. The cycle will halt in approximately 10 seconds. When prompted, press ENTER to continue.
- 5. The abort will continue with a purge delay according to the time programmed in the calibration setup. When the purge time expires and the step indicates IDLE, the abort process is completed. Press EXIT, then OK to return to the CALIBRATION menu.

O₂ Calibration with 6888Xi and Field Communicator

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select CONFIGURE.
- 3. From the CONFIGURE menu, select CALIBRATION.
- 4. From the CALIBRATION menu, again select CALIBRATION.
- 5. From the CALIBRATION menu, select O₂ CALIBRATION.
- 6. In the first screen, a "Loop should be removed from automatic control" warning occurs. Remove the 6888Xi from any automatic controls loops to avoid a potentially dangerous operating condition. Press OK when ready.
- 7. At the next screen when step shows APPLY GAS 1, press OK to return to the SELECT ACTION menu.
- 8. At the SELECT ACTION menu, select STEP CALIBRATION then ENTER to begin the calibration with Flow Gas 1.

- 9. When Flow Gas 1 and Read Gas 1 are complete and the step shows APPLY GAS 2, press OK to return to the SELECT ACTION menu.
- 10. At the SELECT ACTION menu, select STEP CALIBRATION then ENTER to continue the calibration with Flow Gas 2.
- 11. When Flow Gas 2 and Read Gas 2 are complete and the step shows STOP GAS, press OK to return to the SELECT ACTION menu.
- 12. At the SELECT ACTION menu, select STEP CALIBRATION then ENTER to continue the calibration with Purge.
- 13. When the step shows IDLE, press OK to return to the SELECT ACTION menu.
- 14. At the SELECT ACTION menu, select EXIT CALIBRATION, press ENTER, then OK to return to the CALIBRATION menu.
- 15. At the CALIBRATION menu, select RESULT.
- 16. At the RESULT menu, the results of the calibration will be displayed. In the event the calibration cycle fails, the reason will be displayed here as well. The calibration results are described as follows:

Success – Calibration completed successfully.

Failed Constant – The calculated calibration constant is outside the range of ±20.00. **Failed Slope** – The calculated calibration slope is outside the range of 34.5 to 57.5. **Failed Temperature** – With the extended temperature function enabled and the operating above the heater set point, the process temperature varied by more than ±5°C during the calibration cycle.

Gas 1 Tolerance Error – The measured value for gas 1 varied more than $\pm 10\%$ from the programmed value. Possible causes are incorrect gas value programmed in the 6888XI, incorrect gas value in bottle, or gas bottle is empty. This error can occur only if the Tolerance Check feature is active.

Gas 2 Tolerance Error – The measured value for gas 2 varied more than $\pm 10\%$ from the programmed value. Possible causes are incorrect gas value programmed in the 6888XI, incorrect gas value in bottle, or gas bottle is empty. This error can occur only if the Tolerance Check feature is active.

AutoCal No Resp – No communication or loss of communication to the SPS4001B or IMPS. **AutoCal OutofSync** – Loss of communication synchronization to the SPS4001B or IMPS. **AutoCal Abort** – The SPS4001B or IMPS aborted the calibration cycle due to a low gas bottle indication.

WarmUp Abort – Attempted to perform a calibration during warmup.

Alarm Abort – Another alarm occurred and caused the calibration cycle to abort. In the event of a calibration failure, perform the following steps. Otherwise, proceed to the next step.

- a. From the RESULT menu, press HOME to return to the main menu.
- b. From the main menu, select SERVICE TOOLS.
- c. From the OVERVIEW menu, select ALERTS.
- d. From the ALERTS menu, select ACTIVE ALERTS.
- e. The ACTIVE ALERTS menu should contain an A: CALIBRATION FAILED alarm. Press the left arrow key to return to the ALERTS menu.
- f. From the ALERTS menu, select DEVICE STATUS.
- g. From the DEVICE STATUS menu, select ACKNOWLEDGE.
- h. From the ACKNOWLEDGE menu, select ACK CALIBRATION FAILED. When the process is complete, the screen will return to the ACKNOWLEDGE menu.
- 17. If the Calibration Acknowledge parameter is ON, perform the following steps. Otherwise, proceed to the next step.
 - a. Press HOME to return to the main menu.

- b. From the main menu, select SERVICE TOOLS.
- c. From the OVERVIEW menu, select ALERTS.
- d. From the ALERTS menu, select ACTIVE ALERTS.
- e. The ACTIVE ALERTS menu should contain an M: CALIBRATION CHANGED alarm. Press the left arrow key to return to the ALERTS menu.
- f. From the ALERTS menu, select DEVICE STATUS.
- q. From the DEVICE STATUS menu, select ACKNOWLEDGE.
- h. From the ACKNOWLEDGE menu, select ACK CALIBRATION.
- i. The next screen shows the CURRENT CAL and NEW CAL slope and constant values. Press OK to continue.
- j. Use the UP and DOWN arrow keys to change the value from NO to YES or YES to NO. Press ENTER to continue. If YES is selected, the Field Communicator will respond CALI-BRATION CONSTANTS ACCEPTED. ALERT CLEARED. Press OK to return to the ACKNOWLEDGE menu.
- 18. If the Diffuser Warning Function is active, perform the following steps.
 - a. Press HOME to return to the main menu.
 - b. From the main menu, select SERVICE TOOLS.
 - c. From the OVERVIEW menu, select ALERTS.
 - d. From the ALERTS menu, select ACTIVE ALERTS.
 - e. The ACTIVE ALERTS menu should contain an A: DIFFUSER WARNING alarm. Press the left arrow key to return to the ALERTS menu.
 - f. From the ALERTS menu, select DEVICE STATUS.
 - g. From the DEVICE STATUS menu, select ACKNOWLEDGE.
 - h. From the ACKNOWLEDGE menu, select ACK DIFFUSER WARNING. When the process is complete, the screen will return to the ACKNOWLEDGE menu.

Aborting O₂ Calibration with 6888Xi and Field Communicator

- 1. From the calibration prompt screen, press the OK button to return to the SELECT ACTION menu.
- 2. From the SELECT ACTION menu, select ABORT CALIBRATION then press ENTER.
- 3. The cycle will halt in approximately 10 seconds. When the step shows STOP GAS, press OK to return to the SELECT ACTION menu.
- 4. From the CALIBRATION menu, select STEP CALIBRATION then ENTER.
- 5. The abort will continue with a purge delay according to the time programmed in the calibration setup. When the step shows IDLE, press OK to return to the SELECT ACTION menu.
- 6. From the SELECT ACTION menu, select EXIT CALIBRATION then ENTER, the OK to return to return to the CALIBRATION menu.

3.8.3 Calibration Log

The 6888XI stores the current and 10 previous calibrations. The stored data includes the slope, constant, cell impedance and time (in days) since that calibration. The log can be accessed as follows:

Using the 6888Xi Keypad & Display:	IOB 1 Probe 1(or 2)\Calibration\Cal Constants\ Cal Logs
Using the Field Communicator:	Configure\Calibration\Calibration Constants\Calibration Logs

When first entering the log, the screen will display calibration 1. This is the most recent previous calibration, not the current calibration. Calibration 0 displays the current calibration. Use the keypad or communicator keys to navigate through the logs. The factory default for log entries is a slope of 50.00 mV/Dec and constant of 0.00 mV. Any log entries with these values means there have not been at least 10 calibrations performed to fill the entire log.

WARNING

Failure to remove the 6888Xi from automatic control loops prior to performing this procedure may result in a dangerous operating condition.

3.8.4 Reset Calibration

The 6888Xi has the ability to reset the current calibration and replace it with the previous. A calibration may be reset in cases where the calibration was acknowledged in error or the calibration was known to contain invalid values. Resetting a calibration will transfer the slope and constant from calibration 1 in the log into the calibration 0 position. The cell impedance and days since calibration remain unchanged.

Reset the calibration as follows:

Jsing the 6888Xi Keypad & Display:	IOB 1 Probe 1(or 2)\Calibration\Cal Constants\ Current Cal\Reset Cal
Jsing the Field Communicator:	Configure\Calibration\Calibration Constants\ Reset Calibration Constants

Follow the instructions on the screen to complete the reset function.

WARNING

Failure to remove the 6888Xi from automatic control loops prior to performing this procedure may result in a dangerous operating condition.

3.9 D/A Trim

The D/A trim procedure is used to calibrate the 4-20 mA output signal to a precision mA measurement device. Only the signal to the DCS needs to be trimmed.

D/A Trim with 6888Xi

- 1. Press the MENU button repeatedly until the IOB1 Probe 1 menu displays.
- 2. From the main menu, select DIAGNOSTICS then press ENTER.
- 3. From the DIAGNOSTICS menu, select MAINTENANCE then press ENTER.
- 4. From the MAINTENANCE menu, select ANALOG OUTPUT then press ENTER.
- 5. From the ANALOG OUTPUT menu, select TRIM mA OUTPUT then press ENTER.
- 6. In the first screen, a "Remove Loop from Auto" warning occurs. Remove the 6888Xi from any automatic controls loops to avoid a potentially dangerous operating condition. Press ENTER when ready to start.
- 7. Follow the prompts on the 6888Xi display to perform the trim.
- 8. Use the RIGHT and LEFT arrow keys to select the digit to edit, then the UP and DOWN arrow keys to change the value of the digit. Press ENTER to save the new value. Press ENTER to accept the change.

9. When complete, press EXIT to return to the ANALOG OUTPUT menu.

WARNING

Failure to remove the 6888Xi from automatic control loops prior to performing this procedure may result in a dangerous operating condition.

10. Repeat steps 1 through 9 for PROBE 2 if configured for dual channel.

D/A Trim with 6888Xi and Field Communicator

- 1. Use the 375/475 Field Communicator to access the main HART menu.
- 2. From the main menu, select SERVICE TOOLS.
- 3. From the SERVICE TOOLS menu, select MAINTENANCE.
- 4. From the MAINTENANCE menu, select ANALOG OUTPUT.
- 5. From the ANALOG OUTPUT menu, select TRIM mA OUTPUT.
- 6. In the first screen, a "Loop should be removed from automatic control" warning occurs. Remove the 6888Xi from any automatic controls loops to avoid a potentially dangerous operating condition. Press OK when ready.
- 7. Follow the prompts on the 6888Xi display to perform the trim.
- 8. Use the stylus on the screen to enter the new measured analog output value then press ENTER to accept.
- 9. When trim is complete, press OK to return to the ANALOG OUTPUT menu.

Section 4: Troubleshooting

4.1 Overview

When the Zirconium Oxide sensing cell is heated to its setpoint [736 °C (1357 °F)], the cell will generate a voltage that represents the difference between the process O_2 % and the reference O_2 % inside the probe (20.95% O_2 instrument or ambient air).

When flowing calibration gases, the raw cell millivolt value should represent the levels on the chart in Figure 4-1. Note that the raw cell millivolt value increases logrithmically as the O₂ concentration decreases.

FIGURE 4-1. O₂ Sensor mV Reading vs %O₂ at 736°C (1357°F) (Reference Air, 20.95% O₂)

O ₂ %	100	20	15	10	9	8	7	6	5	4
EMF (mV)	-34	1.0	7.25	16.1	18.4	21.1	23.8	27.2	31.2	36.0
O ₂ %	3	2	1	0.8	0.6	0.5	0.4	0.2	0.1	0.01
EMF (mV)	42.3	51.1	66.1	71.0	77.5	81.5	86.3	101.4	116.6	166.8

4.2 General

Consider the following equipment conditions, features, and requirements when troubleshooting a problem.

Install all protective equipment covers and safety ground leads after troubleshooting. Failure to install covers and ground leads could result in serious injury or death.

4.2.1 Grounding

It is essential that adequate grounding precautions are taken when installing the system. Thoroughly check both the probe and electronics to ensure the grounding quality has not degraded during fault finding. The system provides facilities for 100% effective grounding and the total elimination of ground loops.

4.2.2 Electrical Noise

The 6888Xi has been designed to operate in the type of environment normally found in a boiler room or control room. Noise suppression circuits are employed on all field terminations and main inputs. When fault finding, evaluate the electrical noise being generated in the immediate circuitry of a faulty system. Ensure all cable shields are connected to earth.

4.2.3 Electrostatic Discharge

Electrostatic discharge can damage the ICs used in the electronics. Before removing or handling the circuit boards, ensure you are at ground potential.

4.3 Alarm Indications

The first indication of a problem at the O_2 measuring system usually comes from the operators running the process. Critical alarms that render the O_2 measurement unusable will force the 4-20 mA analog output signal representing O_2 to go to a default condition, as follows:

4-20 mA Signal Alarm Level	Transmitter Condition
0 mA	Transmitter unpowered, or completely failed
3.5 mA	Critical Alarm - transmitter reading unusable (factory default)
3.8 mA	Reading Under Range (Example - user sets range to 2-10%. Current reading is 1.9%)
4 to 20 mA	Normal Operation
20.5 mA	Reading Over Range (Example - range is 0-10%. Current reading is 12%)
>21 mA	Critical Alarm - transmitter reading is unusable (user can choose this alarm level instead of the factory default level of 3.5 to 3.6 mA)

Table 4-1 - Alarm Indications

NOTE

For correct operation, ensue the Distributed Control System is configured to interpret these signal levels correctly.

Once an alarm condition is identified, the 6888Xi offers a number of diagnostics to interpret the specific alarm.

Alarm indications are available via the 6888Xi or the 475 Field Communicator and Rosemount Analytical's Asset Management software. When the error is corrected and/or power is cycled, the diagnostic alarms will clear or the next error on the priority list will appear.

4.4 Identifying and Correcting Fault Indications

There are two types of alarms; recoverable and non recoverable. If an existing alarm is recoverable, the alarm-active indication will disappear when the alarm condition no longer exists. If an alarm is not recoverable, the alarm indication will continue to be displayed after the cause of the alarm condition is corrected. AC power to the 6888Xi must be cycled to clear a non-recoverable alarm.

Alarm messages are displayed on the 6888Xi display window when the alarm status display is accessed via the 6888Xi menu. A listing of the alarm/fault messages and the related fault status descriptions are shown in Table 4-2.

Fault conditions that give no fault indication and that allow the probe to pass calibration are listed and discussed after Table 4-2.

Message	Status	Alert	Self Clearing	4-20 mA Critical Alarm
NV Memory Fail	A checksum error was detected in the nonvolatile memory configuration data when the unit was turned on. Default values have been loaded. Check to see that your configurations have not been changed. Cycle the power to clear alarm.	Failed	N	Y
Board Temp High	The electronics board temperature reading is above the threshold. The board may not function correctly. The predefined temperature threshold is 86 °C for IO board or 126 °C for Transmitter board.	Failed	N	Y
Heater Ramp Rate	Heater ramp rate is greater than the defined warm-up ramp rate. Heater may be out of control. Alarm condition: If the heater ramp rate stay above 3.5 °C/sec for 30 seconds continuously.	Failed	N	Y
O ₂ Sensor Open	The cell impedance voltage is reading less than -1.0 VDC indicating the O_2 sensor wires may be disconnected or the O_2 sensor junction may be open. Check wiring.	Maint	Y	Y
O ₂ T/C Open	The O_2 sensor heater thermocouple voltage is reading more than 0.065 volt indicating the thermocouple wires may be disconnected or the thermocouple junction may be open. Check wiring.	Maint	Y	Y
O ₂ Temp Low	The sensor heater temperature is below the low temperature threshold. If Extended Temperature feature is not enabled, the predefined low temperature threshold is the 726 °C. If Extended Temperature feature is enabled, the predefined low temperature threshold is the 726 °C if the "Heater SP" is set to "Normal" or 540 °C for it is set to "Low".	Maint	Y	Y

Table 4-2 - Diagnostic/Unit Alarm Fault Definitions (1 of 2)

Message	Status	Alert	Self Clearing	4-20 mA Critical Alarm
O ₂ Temp High	The sensor heater temperature is above the high temperature threshold. If Extended Temperature feature is not enabled, the predefined high temperature threshold is 750 °C. If Extended Temperature feature is enabled, the high temperature threshold is the defined by the "High Temp Alm SP" parameter.	Maint	Y	Y N
$O_2 T/C$ Shorted	This diagnostic is only intended to detect a copper short of the thermocouple connections at the electronics connector. The Cell Heater T/C voltage is reading close to zero indicating the thermocouple wires may be shorted.	Maint	Y	Y
O ₂ T/C Reversed	The O ₂ sensor heater temperature thermocouple voltage is reading a negative voltage and is decreasing indicating the thermocouple wire connections may be reversed. Check wiring.	Maint	N	Y
Heater Failure	The O_2 sensor heater temperature is not responding to the controller and can't reach final temperature set by the device, indicating the O_2 heater may have failed.	Maint	Y	Y
Burner Flameout	The Flame Status Relay Input is set to the OFF state indicating it is not safe to operate the sensor heater and the heater should be turned off.	Maint	Y	Y
Xmtr Disconnect	Communication failures detected between transmitter and the IO board indicat- ing the transmitter has been disconnected from the IO board. Check the con- necting cable.	Maint	Y	Y
Cal Recommended	Probe calibration is recommended. The cell impedance has shifted enough (above 100 ohms and has shifted 50 ohms) since the last calibration that the accuracy may be compromised	Maint	Y	N
Cal Failed	A calibration error occurred during the last calibration. Check the Cal Result for more details. Acknowledge Calibration Failed or recalibrate to clear alarm.	Maint	Y	N
Cell Imp High	The cell impedance reading is above threshold (2000 Ohms) indicating the cell may be beyond its useful life.	Maint	Y	N
Probe Mismatch	The probe type does not match indicating wrong Transmitter board or probe is connected.	Maint	Y	Y
Xi Disconnect	It indicates using Transmitter's AO when connected to Xi and Xi is disconnected.	Maint	Y	Y
Cal Changed	Calibration constants have been changed. Acknowledge Calibration to update constants and clear alarm.	Adv	Y	Ν
Heater Volt Low	The heater voltage for the O_2 heater is below 30 volt. Check Heater Power.	Adv	Y	Ν
Probe Changed	The probe or Transmitter board has been changed. Acknowledge Probe Changed to synchronize calibration constants and clear alarm.	Adv	Y	N
Low O ₂	The O ₂ reading is below the threshold. The threshold is defined by the "Low O2 Alm SP".	Adv	Y	N
Diffuser Warning	There can be multiple causes for the alert. The diffuser or cal line may be plugged, the cell may be pressurized, the cal gas bottle may be empty, or cal gas may not be turned on. Acknowledge Diffuser Warning to clear alarm then check Diffuser Warn for more details.	Adv	Y	N

4.5 Calibration passes, but still reads incorrectly

There are a few fault conditions where no alarm indication is present and the probe passes calibration, but the O_2 reading may still be incorrect:

1. An incorrect flow rate of calibration gases can cause a shifted calibration. If the flow rate of calibration gases is too low, process gases can mix in with the calibration gases causing a mix-

ture at the cell that is different than what is noted on the calibration gas bottles. Always set the calibration flow rate when a new diffuser is installed, and never readjust this flow rate until another new diffuser is installed. For applications with heavy particulate loading, see "Probe Passes Calibration, O₂ Still Reads Low". Always use a two stage pressure regulator for calibration gas.

2. No or improper reference air supplied.

4.5.1 Probe passes calibration, O₂ still reads high

External Reference Air Leak - There may be a leak that is permitting ambient air to mix with the process gases. Since many combustion processes are slightly negative in pressure, ambient air can be drawn into the cell area, biasing the O_2 reading upward.

1. Make sure that the calibration gas line is capped tightly between calibrations.

2. If autocal is used, make sure the check valve is seating properly.

3. If an abrasive shield is used, a small leak at the probe flange gasket can migrate down the annular space between the probe OD and shield ID to the sensing cell causing a false high O_2 reading.

Internal Reference Air Leak - See Figure 4-2. There may be a leak inside the O_2 Probe itself, permitting the reference air (20.95% O_2) to mix with the process gases at the cell. To confirm this leak condition, pressurize the inside (reference side) of the probe by plugging the reference air exhaust port with your finger for 1 minute. (The conduit ports where the signal and power wires pass may also need to be sealed.) The O_2 reading should decrease slightly. If the O_2 reading increases during this test there is a leak inside the probe.

1. Acid condensation inside the probe can degrade the hose that carries the cal gas to the cell.

NOTE

Aways install a new corrugated washer whenever the sensing cell is removed from the probe.

Inspect this hose. Dislodging or improper installation of the cal gas or reference air hose can cause a leakage path.

The sensing cell is fastened to the end of the probe tube and uses a corrugated washer to separate the process gases from the ambient reference air. The corrugated washer may be damaged by corrosion. Discard used washer. **Bad Reference Side Cell Electrode -** A bad reference side cell electrode can cause an elevated O₂ reading. This fault is usually indicated by a frequent "Calibration Recommended" alarm and increasing cell impedance readings. A high cell impedance can be calibrated out, but if the impedance continues to increase rapidly, the sensing cell must be replaced.

4.5.2 Probe passes calibration, O₂ still reads low

The diffusion element at the end of the probe is a passive filter. It plugs very slowly, since there is no active flow being drawn across it. In applications that have a heavy particulate loading (coal or wood fired boilers, cement and lime kilns, catalyst regeneration, recovery boilers, etc.), this diffusion element will eventually plug.

NOTE

It is important not to pressurize the sensing cell during calibrations by flowing excessive cal gas against a plugged diffuser. Always use a two-stage regulator for setting calibration gas pressure. Calibration flow rates should be set only when a new diffuser is installed. As the diffuser plugs, do not adjust the flow rates upward.

4.5.3 How do I detect a plugged diffuser?

The O_2 cell's speed of response will degrade. The O_2 trend in the control room will become smoother.

When calibrating, the calibration gas flow rate will be noted to be lower. Never readjust this flow upwards to correct for a plugged diffuser. Adjust this flow only when a new diffuser is installed.

Always note the time it takes for the cell to recover to the normal process value after the cal gas is removed. As the diffuser plugs, this recovery time will get longer and longer. Use the Calibration Record provided to record and track Calibration Response times.

The 6888Xi Advanced Electronics is available with enhanced software feature to automatically characterize the rate of diffuser pluggage during a calibration cycle.

4.5.4 Can I calibrate a badly plugged diffuser?

It may not be possible to immediately replace a plugged diffuser while the process is on line.

One can calibrate the probe without pressurizing the cell by adjusting the calibration gas flow rate downward before calibration. For instance, say the process is at 3%, and the first calibration gas is 8%. Adjust the flow of cal gas downward until the reading begins to migrate from 8% to lower values, indicating that process gases are now mixing in with the calibration gases.

Adjust the flow rate back up until this mixing is just eliminated. Calibrate at this flow rate. Replace the diffuser at the first opportunity.

A WARNING

Install all protective equipment covers and safety ground leads after troubleshooting. Failure to install covers and ground leads could result in serious injury or death.

Calibration Record For Rosemount Analytical In Situ O₂ Probe

Probe Serial Number: _____

Probe Tag Number: _____

Probe Location: _____

Date Placed Into Service: _____

Date	Slope	Constant	Impedance	Reponse _{initial}	Response final

Notes: Response_{initial}

When the second calibration gas is turned off, note the number of seconds required for the O_2 value to begin migrating back to the process value.

Response_{final} When the second calibration gas is turned off, note the number of seconds required for the O₂ value to settle out at the process value.

Section 5: Maintenance and Service

5.1 Overview

This section identifies the calibration methods available and provides the procedures to maintain and service the 6888Xi.

WARNING

Install all protective equipment covers and safety ground leads after equipment repair or service. Failure to install covers and ground leads could result in serious injury or death.

5.2 Maintenance Intervals

The maintenance interval required is quite variable, depending on the type of service the analyzer is placed into. The zirconium oxide sensing cell is non-depleting, and has no specific shelf life or a defined life in flue gas operation. The cell of a probe that is mounted inside a boiler that is burning natural gas may shift very little over several years. Acidic compounds are the main aggressors to the sensing cell, typically SO₂ resulting from sulfur contained in coal and heavy oil fuels, and also HCl from the combustion of plastics in municipal incinerators and in industrial thermal oxidizers. Sensing cells may experience significant degradation and signal shift in this type of service, particularly if the operating levels of O_2 are very low (below 1% O_2).

A calibration check is generally recommended on a quarterly basis (every 3 months) by flowing bottled gas to the probe. (Make sure that the operations personnel are notified when doing this, and also make sure that the O2 control loop is placed in manual mode). If the probe readings vary significantly from the bottle values, then a formal calibration should be conducted as noted in Section 3: Configuration, Startup and Operation.

The 6888Xi offers a "calibration recommended" diagnostic that will indicate when the probe needs to be calibrated.

Combustion processes that have a high level of ash or other particulate content will cause the diffusion element on the end of the probe to plug off. A badly plugged diffuser will cause a slower speed of response to changing O_2 levels in the process. This can usually be seen on the recorded trends in the control room.

When performing a calibration check or actual calibration, the calibration flow meter may read lower if the diffuser is badly plugged. (Never increase the flow rate back up, however, as this can cause a shifted calibration. Adjust the calibration flow rate only when a new diffuser is installed). Always record the response time back to the process after the calibration gases are removed, as noted on the calibration record at the end of this section. Diffuser pluggage can be tracked through this record.

A visual inspection of the probe should be conducted during plant outages, paying particular attention to condensed components. Condensation can be reduced or eliminated by insulating the probe installation, including the probe mount, flange, and blue housing.

5.3 Calibration

The 6888Xi can calibrate an O₂ Probe manually through the front panel display or via a handheld 375/475 Field Communicator, or automatically through the SPS 4001B Single Probe Autocalibration Sequencer or the IMPS 4000 Intelligent Multiprobe Test Gas Sequencer.

5.3.1 Automatic Calibration

The 6888Xi can be used with the SPS 4001B or IMPS 4000 in order to perform an auto / semiauto calibration. Refer to the SPS 4001B or IMPS 4000 Instruction Manual for further details on how to configure and perform an automatic calibration.

5.3.2 Manual Calibration

Refer to the "Calibration - General" in Section 3: Configuration, Startup and Operation to perform a manual calibration.

5.4 **Replacement Parts**

Refer to Section 6: Replacement Parts for individual replacement parts and part replacement kits. Part replacement kits are available for each of the components discussed in this section.

5.5 6888Xi Component Replacement

Each of the following procedures detail how to replace a specific component of the 6888Xi. Most of these procedures include component setup instructions that must be performed before returning the related O_2 Probe to service. Refer to Figure 5-1 and Figure 5-2 for illustrations of the 6888Xi components.

5.5.1 I/O Board Replacement

Use the procedure that follows to replace and set up the I/O board in the 6888Xi.

WARNING

Disconnect and lock out power before working on any electrical components.

MARNING

The I/O Board is shipped from the factory without any of the enhanced software features activated. These features must be activated once the new board has been installed and before the Remote Interface is put into service.

FIGURE 5-2. 6888Xi Components

FIGURE 5-3. I/O Board Jumper & Switch Settings

Configuration	Desired Selection	Jumper	Jumper Setting
Flame Safety Function or Extra Alarm Output	Flame Safety Function (Factory configured when ordered with Flame Safety Interlock Feature)	JP1 & JP2 (both must be set the same)	Pins 1 & 2
	Extra Alarm Output		Pins 2 & 3
Loop Power for 4-20 mA/HART Signal from 6888Xi to Probe	Powered from 6888Xi (most common method)	JP5	Pins 1 & 2
	Powered from External DC Supply		Pins 2 & 3
Loop Power for 4-20 mA/HART Signal from 6888Xi, to DCS	Powered from 6888Xi	JP7 & JP8 (both must be set the same)	Pins 1 & 2
	Powered from DCS		Pins 2 & 3
Sw4 Switch Settin	gs: (Default = OF	F)	

- 1: Reserved: must remain OFF.
- 2: Not used
- 3: Not used.
- 4: Flame safety function enable.

WARNING

If the existing I/O Board has been operated with enhanced software features, these features must be activated in the new board before the 6888Xi Electronics is put back into service. Failure to do so will cause a false analog output signal to the DCS.

Replacing an Existing I/O Board

- 1. Loosen the four screws securing the 6888Xi cover. The screws are captive and do not need to be completely removed.
- 2. Swing the 6888Xi cover down to expose the inner components.
- 3. Disconnect the 10-pin ribbon cable from the I/O Board. A new cable is supplied in the replacement kit and should be used if the old one is damaged.
- 4. Tag and disconnect wiring for Alarm Outputs, Flame Status Input and/or SPS/IMPS as applicable.
- 5. Slide the I/O Board part way out of the 6888Xi enclosure.
- 6. Disconnect the 4-position plug for the transmitter probe and output wiring. Remove the I/O Board completely from the 6888Xi enclosure.
- 7. See Figure 5-3. Set jumpers JP1, JP2, JP5, JP7 and JP8 to their proper positions using the old I/O Board as a guide.
- 8. Set switch SW4 to their proper positions using the old I/O Board as a guide.
- 9. Partially slide the new I/O Board into the 6888Xi enclosure. Ensure the board is correctly aligned within the slots in the enclosure.
- 10. Connect the 4-position plug for the transmitter probe and output wiring. Slide the I/O Board completely into the 6888Xi enclosure.

FIGURE 5-5. I/O Board Flame Safety Interlock Wiring

- 11. Reinstall wiring for Alarm Outputs, Flame Status Input and/or SPS/IMPS as applicable. See Figure 5-4 and Figure 5-5 for wiring diagrams. See Figure 5-6 for I/O board positions in the 6888Xi enclosure.
- 12. Connect the ribbon cable to the I/O Board. A new cable is supplied and should be used if the old one is damaged.
- 13. Swing the 6888Xi cover up in place and tighten the four screws.
- 14. Prior to operating the O₂ Probe and the 6888Xi, all optional software enhancements (previously enabled or not) must be enabled. Notify Rosemount Analytical Inc. and reference the following part numbers to enable the related software options:

Part Number	Description
6A00269G01	Enhanced Software Option Upgrade, Stoichiometric Function
6A00269G02	Enhanced Software Option Upgrade, Programmable Reference Function
6A00269G03	Enhanced Software Option Upgrade, Extended Temperature Function
6A00267604	Enhanced Software Option Upgrade, Diffuse Warning Function

NOTE

For enhanced software upgrades or to enable optional software features previously used in your 6888Xi configuration, contact Rosemount Analytical at 1-800-433-6076.

NOTE

The calibration parameters are stored in both the I/O Board and Transmitter Board. When the I/O Board is replaced, the calibration parameters must be either transferred from the Transmitter Board or the entire instrument must be recalibrated.

- 15. Reapply power to the Remote Interface and Probe. When initialization is complete, the Probe will begin heating up, but an alarm condition will be shown. Prior to using the Transmitter for measurement purposes, perform one of the following:
 - a. Recalibrate the O₂ Probe according to the applicable calibration instructions in Section 3.
 - b. Synchronize the calibration parameters as follows:
 - i. Press the <DIAG> button once to view the alarms. A "Probe Changed" alarm will be shown.
 - ii. Press the <EXIT> button once to enteer the "Diagnostic Menu".
 - iii. Use the Up/Down keys to select "3-Acknowledge Alarms". Press <ENTER>.
 - iv. Use the Up/Down keys to select "3-Ack Probe Changed". Press <ENTER>.
 - v. Use the Up/Down keys to select "1-Get From Probe". Press <ENTER> twice.
 - vi. When transfer is complete, press <EXIT> twice to return to the main menu.

5.5.2 AC Relay Board Replacement

Use the procedure that follows to replace and set up the AC Relay board in the 6888Xi.

Disconnect and lock out power before working on any electrical components.

Replacing an 6888Xi AC Relay Board

- 1. Loosen the four screws securing the 6888Xi cover. The screws are captive and do not need to be completely removed.
- 2. Swing the 6888Xi cover down to expose the inner components.
- 3. Tag and disconnect wiring for the Relay In.
- 4. Slide the AC Relay Board part way out of the 6888Xi enclosure.
- 5. Tag and disconnect the two 3-position plugs for the AC input and transmitter probe heater wiring. Remove the AC Relay Board completely from the 6888Xi enclosure.
- 6. Partially slide the new AC Relay Board into the 6888Xi enclosure. Ensure the board is correctly aligned within the slots in the enclosure.
- 7. Connect the two 3-position plugs for the AC input and transmitter probe heater wiring. Slide the AC Relay Board fully into the 6888Xi enclosure.
- 8. Reinstall wiring for Relay In. See Figure 5-7 for wiring diagram.
- 9. Swing the cover up in place and tighten the four screws.

A CAUTION

Installing and configuring an AC Relay Board for the Flame Status Interlock function will dedicate alarm output 2 for this function. Once configured for Flame Status Interlock, the software will override any previous alarm assignments for alarm output 2 and not allow it to be used for any other function.

FIGURE 5-7. I/O & AC Relay Board Flame Safety Interlock Wiring

Adding an AC Relay Board to the 6888Xi

- 1. Loosen the four screws securing the 6888Xi cover. The screws are captive and do not need to be completely removed.
- 2. Swing the 6888Xi cover down to expose the inner components.
- 3. Slide the I/O Board part way out of the 6888Xi enclosure.
- 4. Make the following jumper and switch settings:a. Set SW4, Position 4 "ON" and all other positions "OFF".b. Move the jumpers for both IP1 and IP2 to pins 1 and 2.
- 5. The I/O Board must be relocated to the right-most slot inside the 6888Xi enclosure. If there is enough service loop on the 6888Xi wiring, slide the I/O Board completely out of the enclosure and re-install it in the right-most slot. Ensure the board is correctly aligned within the slots. See Figure 5-8 for the correct location of the I/O Board.

NOTE

An AC Relay Board can only be added to single channel 6888Xi, i.e. only one I/O Board controlling one O2 Probe. The Flame Status Interlock function requires a contact closure on the digital input of the I/O Board to indicate a flame is present. When properly connected and configured, AC power will be applied to the transmitter only when the flame is present.

- 6. If there is not sufficient wiring, tag and disconnect all wiring, and relocate the board. Then reinstall the wiring.
- 7. Partially slide the AC Relay Board into the left-most slot of the 6888Xi enclosure. The component side of the AC Relay board will be to the right with the fuse holder at the top. Ensure

the board is correctly aligned within the slots in the enclosure. See Figure 5-8 for the correct location of the AC Relay Board.

- 8. Connect two wires approxmately 6" long each between the "HTR COM" and the "HTR NC" connections on the I/O Board and the "RELAY IN"connections on the AC Relay Board; observe polarity. See Figure 5-7 for wiring details.
- 9. Connect the flame status indicator contact to the "DI+" and "DI-" on the AC Relay Board. See Figure 5-7 for wiring details.
- 10. Connect the AC input and output wiring to the Transmitter. See Figure 5-7 for wiring details.
- 11. Slide the AC Relay Board completely into the 6888Xi enclosure.
- 12. Swing the cover up in place and tighten the four screws.

5.5.3 Power Supply Board Replacement

Use the procedure that follows to replace the Power Supply board in the 6888Xi. Use this procedure to replace an original Linear Power Supply board or the current configuration Switching Power Supply board.

WARNING

Disconnect and lock out power before working on any electrical components.

- 1. Loosen the four screws securing the 6888Xi cover. The screws are captive and do not need to be completely removed.
- 2. Swing the 6888Xi cover down to expose the inner components.
- 3. Refer to the wiring diagram in Figure 5-9. Unplug the AC input wiring plug from the Power Supply board. A new plug is supplied in the replacement kit and should be used if the 6888Xi plug is damaged.
- 4. Disconnect the 14-pin ribbon cable from the Power Supply board.
- 5. Remove the two long screws that secure the bracket (9, Figure 5-1) to the 6888Xi enclosure.
- 6. Hold the AC input wiring to the right and slide the Power Supply board out of the 6888Xi enclosure.
- 7. Install the new mounting bracket (9, Figure 5-1) on the new Power Supply board (10, Figure 5-1). A new bracket and mounting screws are provided in the replacement kit.

FIGURE 5-8. I/O and AC Relay Board Position in 6888Xi Enclosure

- 8. Slide the Power Supply board into the mating slots in the 6888Xi Enclosure. Make sure the board is correctly aligned in the slots.
- 9. Install and tighten the bracket mounting screws. Two new screws are provided in the replacement kit and should be used if the 6888Xi screws are damaged.
- 10. Connect the ribbon cable to the Power Supply board. A new ribbon cable (7, Figure 5-1) is provided in the replacement kit and should be used if the 6888Xi cable is damaged.
- 11. Connect the AC power plug to the Power Supply board.
- 12. Swing the 6888Xi cover up and tighten the four mounting screws.

5.5.4 Front Panel Replacement

Use the procedure that follows to replace the front panel on the 6888Xi.Replacement kits with and without the CPU board are available. Use the instructions that apply to the replacement kit you have.

WARNING

Disconnect and lock out power before working on any electrical components.

Replacing Front Panel Assembly without CPU Board

- 1. Loosen the four screws securing the 6888Xi cover. The screws are captive and do not need to be completely removed.
- 2. Swing the 6888Xi cover down to expose the inner components.
- 3. Disconnect the 14-pin ribbon cable going to the Power Supply board. A new cable is supplied in the replacement kit and should be used if the old one is damaged.
- 4. Disconnect the 10-pin ribbon cable(s) going to the I/O Board(s). One new cable is supplied in the replacement kit and should be used if either of the ribbon cables are damaged.
- 5. Remove the wire hinge from the right side of the 6888Xi cover. A paper clip or similar device can be inserted into the hole on the left side of the cover to push the hinge out of the cover. A new hinge pin is supplied in the replacement kit and should be used if the old one is damaged.

6. Position the new front panel assembly in place and reinstall the hinge pin. Ensure the hinge pin is fully seated into the 6888Xi cover.

WARNING

Installing and configuring an AC Relay Board for the Flame Status Interlock function will dedicate alarm output 2 for this function. Once configured for Flame Status Interlock, the software will override any previous alarm assignments for alarm output 2 and not allow it to be used for any other function.

- 7. The keypad window on the new front panel may be supplied with interior and exterior protective membranes. Remove the protective membranes prior to final assembly and use of the 6888Xi enclosure.
- 8. Reconnect the 10-pin ribbon cable from the I/O Board.
- 9. Reconnect the 14-pin ribbon cable from the Power Supply Board.
- 10. Swing the 6888Xi cover up in place and tighten the four screws.
- 11. If necessary, reconfigure the appearance of the main display. Refer to Section 3: Configuration, Startup and Operation.

Replacing Front Panel Assembly without CPU Board

- 1. Loosen the four screws securing the 6888Xi cover. The screws are captive and do not need to be completely removed.
- 2. Swing the 6888Xi cover down to expose the inner components.
- 3. Disconnect the 14-pin ribbon cable going to the Power Supply board. A new cable is supplied in the replacement kit and should be used if the old one is damaged.
- 4. Disconnect the 10-pin ribbon cable(s) going to the I/O Board(s). One new cable is supplied in the replacement kit and should be used if either of the ribbon cables are damaged.
- 5. Remove the wire hinge from the right side of the 6888Xi cover. A paper clip or similar device can be inserted into the hole on the left side of the cover to push the hinge out of the cover. A new hinge pin is supplied in the replacement kit and should be used if the old one is damaged.
- 6. Place the front panel assembly on the bench. Remove the 4 screws securing the CPU board to the front cover.

NOTE

Prior to disassembly, observe the position of the plastic bumper with rubber insert as it is installed over the CPU board. The two longer screws are used on the top edge of the CPU board passing through the bumper.

- 7. Lift the CPU board off of the front cover using care not to damage the board.
- 8. Disconnect the keypad overlay ribbon cable from the CPU board. Discard the used front cover with the keypad overlay attached.

A CAUTION

The new front panel assembly may be supplied with protective clear membranes over the interior and exterior of the window. Failure to remove the exterior protective membrane may cause the display to appear distorted. The membrane may be difficult or impossible to remove after extended use at elevated temperatures.

 The keypad window on the new front panel may be supplied with interior and exterior protective membranes. Remove the protective membranes prior to final assembly and use of the 6888Xi enclosure.

NOTE

Prior to assembly, it is recommended that the inside of the keypad overlay window and LCD display window be gently cleaned to remove fingerprints and accumulated dust.

- 10. Clean the inside of the keypad overlay window and LCD display window to remove fingerprints and accumulated dust. Use only a soft cloth; do not use any detergents or chemicals.
- 11. Connect the keypad overlay ribbon cable on the new front panel assembly to the CPU board. Use care not to damage the board.
- 12. Position the CPU board in place in the front panel assembly.
- 13. Reinstall the bumper and 4 screws to secure the CPU board in place. The two longer screws are used with the plastic bumper on the top edge of the CPU board.
- 14. Position the front panel assembly and reinstall the hinge pin. Ensure the hinge pin is fully seated into the 6888Xi cover.
- 15. Reconnect the 10-pin ribbon cable from the I/O Board.
- 16. Reconnect the 14-pin ribbon cable from the Power Supply Board.
- 17. Swing the 6888Xi cover up in place and tighten the four screws.
- 18. If necessary, reconfigure the appearance of the main display. Refer to Section 3: Configuration, Startup and Operation.

5.5.5 DR Board Replacement

Use the procedure that follows to replace the DR board in the 6888Xi that is connected to a Direct Replacement probe.

WARNING

Disconnect and lock out power before working on any electrical components.

- 1. Loosen the four screws securing the 6888Xi cover. The screws are captive and do not need to be completely removed.
- 2. Swing the 6888Xi cover down to expose the inner components.
- 3. Slide the DR board part way out of the 6888Xi enclosure.
- 4. Unplug the wiring harness plug from the connector J8 located on the bottom, left-hand side of the board. Refer to Figure 5-10.
- 5. Unplug the wiring harness plugs from the connectors J1, J2, and J3 located on the top, righthand side of the board. Refer to Figure 6-11.
- 6. Tag and disconnect the wiring to connector J4.
- 7. Remove the DR board from the 6888Xi enclosure.
- 8. Partially slide the new DR board into the mating slots in the 6888Xi Enclosure. Make sure the board is correctly aligned in the slots.
- 9. Refer to the wiring diagram in Figure 6-10. Reconnect the wiring to connector J4.
- 10. Connect the wiring harness plugs to connectors J1, J2, J3, and J8.
- 11. Slide the DR board completely into the 6888Xi enclosure.

NOTE

The calibration parameters are stored in both the I/O Board and Transmitter Board. When the I/O Board is replaced, the calibration parameters must be either transferred from the Transmitter Board or the entire instrument must be recalibrated.

- 12. Reapply power to the Remote Interface and Probe. When initialization is complete, the Probe will begin heating up, but an alarm condition will be shown. Prior to using the Transmitter for measurement purposes, perform one of the following:
 - a. Recalibrate the O₂ Probe according to the applicable calibration instructions in Section 3.
 - b. Synchronize the calibration parameters as follows:
 - i. Press the <DIAG> button once to view the alarms. A "Probe Changed" alarm will be shown.

FIGURE 5-10. DR Board Wiring, Right-Hand Side

- ii. Press the <EXIT> button once to enteer the "Diagnostic Menu".
- iii. Use the Up/Down keys to select "3-Acknowledge Alarms". Press <ENTER>.
- iv. Use the Up/Down keys to select "3-Ack Probe Changed". Press <ENTER>.
- v. Use the Up/Down keys to select "1-Get From Probe". Press <ENTER> twice.
- vi. When transfer is complete, press <EXIT> twice to return to the main menu.

FIGURE 5-11. DR Board Wiring, Left-Hand Side

Section 6: Replacement Parts

6.1 Rosemount 6888Xi Electronics

TABLE 6-1. Replacement Parts for Rosemount 6888Xi

Part Number	Description
6A00329G01	Kit, Switching Power Supply Board
6A00445G01	Kit, I/O Board*
6A00267G01	Kit, AC Relay Board
6A00446G01	Kit, DR Board
6A00447G01	Kit, Front Panel with Overlay & CPU Board
6A00447G02	Kit, Front Panel with Overlay
6A00269G01	Enhanced Software Option Upgrade, Stoichiometric Function
6A00269G02	Enhanced Software Option Upgrade, Programmable Reference Function
6A00269G03	Enhanced Software Option Upgrade, Extended Temperatures Function
6A00269G04	Enhanced Software Option Upgrade, Diffuser Warning Function
6A00237H24	Kit, Pipe & Wall Mount
6A00237H33	Kit, Panel Mount
6A00243G01	Ribbon Cable, 10 Pin (CPU Board to I/O Board)
6A00242G01	Ribbon Cable, 14 Pin (CPU Board to Power Supply Board)
6A00291H01	Insulator
6A00381G01	Kit, Hole Plug & Gland
6A00285H01	Gasket, Panel
6A00287H01	Gasket, Cover

*Note: If the existing I/O Board has been operated with the Stoichiometric enhanced software feature, this feature must be activated in the new board before the 6888Xi is put back into service. Failure to do so will cause a false analog output signal to the DCS.

6.2 Calibration Components

TABLE 6-2. Replacement Parts for Calibration Components

Part Number	Description	
1A99119G01	Calibration Gas Bottles - 0.4% and 8% ${ m O_2}$, balance nitrogen - 550 liters each *	
1A99119G02	Two Flow Regulators (for calibration gas bottles)	
1A99119G03	Bottle rack	
*Note: Calibration gas bottles cannot be shipped via airfreight		

Section 7: Optional Accessories

7.1 HART[®] Handheld 375/475 Field Communicator

The 375/475 Field Communicator is an interface device that provides a common communication link to HART-compatible instruments, such as the 6888Xi. HART Communications Protocol permits all the information available from the 6888Xi's electronics to be transmitted over standard 4-20 mA signal wires. By attaching the 375/475 Field Communicator at a termination point along the

4-20 mA signal line, a technician can diagnose problems and configure and calibrate the 6888Xi as if he or she were standing in front of the instrument.

For more information, call Rosemount Analytical at 1-800-433-6076.

7.2 Asset Management Solutions (AMS)

Asset Management Solutions (AMS) software works in conjunction with the HART Communication Protocol and offers the capability to communicate with all HART plant devices from a single computer terminal.

For more information, call Rosemount Analytical at 1-800-433-6076.

7.3 By-Pass Packages

The specially designed Rosemount Analytical By-Pass Package for oxygen analyzers has proven to withstand the high temperatures in process heaters while providing the same advantages offered by the in situ sensor. Incomel steel tubes provide effective resistance to corrosion, and the package uses no moving parts, air pumps, or other components common to other sampling systems.

For more information, call Rosemount at 1-800-433-6076.

7.4 SPS 4001B Single Probe Autocalibration Sequencer

Rosemount Analytical Inc. specifically designed the SPS 4001B Single Probe Autocalibration Sequencer to provide the capability to perform automatic or on-demand calibrations. The SPS 4001B is fully enclosed in a NEMA cabinet suited for wall-mounting. This cabinet provides added protection against dust and minor impacts.

The SPS 4001B works in conjunction with the 6888Xi, eliminating out-of-calibration occurrences and the need to send a technician to the installation site.

For more information, call Rosemount Cutsomer Support at +1 855 724 2628

7.5 IMPS 4000 Intelligent Multiprobe Test Gas Sequencer

The IMPS 4000 Intelligent Multiprobe Test Gas Sequencer is housed within an IP56 (NEMA 4X) enclosure and has the intelligence to provide calibration gas sequencing of up to four 6888Xi's to accommodate automatic and semi-automatic calibration routines.

This sequencer works in conjunction with the CALIBRATION RECOMMENDED feature, eliminating out-of-calibration occurrences and the need to send a technician to the installation site. In addition, the IMPS 4000 provides a remote contact input to initiate a calibration from a remote location and relay outputs to alert when a calibration is in progress, an O₂ Probe is out of calibration, calibration gases are on, and calibration gas pressure is low.

For more information, call Rosemount Cutsomer Support at +1 855 724 2628

FIGURE 7-3. IMPS 4000 Intelligent Multiprobe Sequencer

7.6 O₂ Calibration Gas

Rosemount Analytical's O_2 Calibration Gas and Service Kits have been carefully designed to provide a more convenient and fully portable means of testing, calibrating, and servicing.

Rosemount Analytical's oxygen analyzers. These lightweight, disposable gas cylinders eliminate the need to rent gas bottles.

For more information, call Rosemount Cutsomer Support at +1 855 724 2628

FIGURE 7-4. Calibration Gas Bottles

7.7 Oxybalance Display And Averaging System

Optional OxyBalance Display and Averaging System. Reviews up to eight 4-20 mA signals from individual probes. Trends individual outputs, calculates four programmable averages as additional 4-20 mA outputs.

For more information, call Rosemount Cutsomer Support at +1 855 724 2628

Appendix A: Safety Data

Â

IMPORTANT

SAFETY INSTRUCTIONS FOR THE WIRING AND INSTALLATION OF THIS APPARATUS

The following safety instructions apply specifically to all EU member states. They should be strictly adhered to in order to assure compliance with the Low Voltage Directive. Non-EU states should also comply with the following unless superseded by local or National Standards.

- 1. Adequate earth connections should be made to all earthing points, internal and external, where provided.
- 2. After installation or troubleshooting, all safety covers and safety grounds must be replaced. The integrity of all earth terminals must be maintained at all times.
- 3. Mains supply cords should comply with the requirements of IEC227 or IEC245.
- 4. All wiring shall be suitable for use in an ambient temperature of greater than 75°C.
- 5. All cable glands used should be of such internal dimensions as to provide adequate cable anchorage.
- 6. To ensure safe operation of this equipment, connection to the mains supply should only be made through a circuit breaker which will disconnect all circuits carrying conductors during a fault situation. The circuit breaker may also include a mechanically operated isolating switch. If not, then another means of disconnecting the equipment from the supply must be provided and clearly marked as such. Circuit breakers or switches must comply with a recognized standard such as IEC947. All wiring must conform with any local standards.
- 7. Where equipment or covers are marked with the symbol to the right, hazardous voltages are likely to be present beneath. These covers should only be removed when power is removed from the equipment - and then only by trained service personnel.
- 8. Where equipment or covers are marked with the symbol to the right, there is a danger from hot surfaces beneath. These covers should only be removed by trained service personnel when power is removed from the equipment. Certain surfaces may remain hot to the touch.
- 9. Where equipment or covers are marked with the symbol to the right, refer to the Operator Manual for instructions.
- 10. All graphical symbols used in this product are from one or more of the following standards: EN61010-1, IEC417, and ISO3864.
- 11. Where equipment or labels are marked "Do Not Open While Energized" or similar, there is a danger of ignition in areas where an explosive atmosphere is present. This equipment should only be opened when power is removed and adequate time as specified on the label or in the instruction manual has been allowed for the equipment to cool down and then only by trained service personnel.

DŮ**L**EŽITÉ

Bezpečnostní pokyny pro zapojení a instalaci zařízení

Následující bezpečnostní pokyny se speciálně vztahují na všechny členské státy EU. Pokyny by měly být přísně dodržovány, aby se zajistilo splnění Směrnice o nízkém napětí. Pokud nejsou pokyny nahrazeny místními či národními normami, měly by je dodržovat i nečlenské státy EU.

- 1. U všech zemnicích bodů, interních a externích, by mělo být vytvořeno odpovídající uzemnění.
- 2. Po instalaci nebo odstranění problémů musí být vyměněny všechny bezpečnostní kryty a uzemnění. Vždy musí být zajištěna integrita všech zemnicích svorek.
- 3. Sí ové kabely by měly odpovídat požadavkům normy IEC227 nebo IEC245.
- 4. Všechna zapojení by měla být vhodná pro použití při vnějších teplotách nad 75 °C.
- 5. Všechna použitá kabelová hrdla by měla mít takové vnitřní rozměry, aby zajistila odpovídající zakotvení kabelu.
- 6. Správnou činnost zařízení zajistíte, vytvoříte-li připojení k napájecímu zdroji pouze přes jistič, který v případě poruchy odpojí všechny obvody s konduktory. Jistič může také obsahovat mechanický odpojovač. Pokud ho neobsahuje, musí být zajištěn a jasně označen jiný způsob odpojení zařízení od zdroje. Jističe nebo přepínače musí odpovídat uznávaným normám, např. IEC947. Všechna zapojení musí odpovídat místním normám.
- Je-li zařízení nebo kryt označen symbolem na pravé straně, pravděpodobně se uvnitř nachází nebezpečné napětí. Tyto kryty by měly být sejmuty pouze po odpojení zařízení od zdroje - a to pouze kvalifikovaným zaměstnancem.
- 8. Je-li zařízení nebo kryt označen symbolem na pravé straně, povrch zařízení může být velmi horký. Tyto kryty by měly být sejmuty pouze kvalifikovaným zaměstnancem po odpojení zařízení od zdroje. Některé povrchy mohou být stále horké.
- 9. Je-li zařízení nebo kryt označen symbolem na pravé straně, přečtěte si nejprve instrukce v návodu k obsluze.
- 10. Všechny grafické symboly používané u výrobku pocházejí z následujících norem: EN61010-1, IEC417 a ISO3864.
- 11. Pokud je zařízení nebo štítky označeno varováním "Je-li zařízení pod napětím, neotvírejte jej" či podobným, může dojít ve výbušném prostředí ke vznícení. Zařízení lze otevřít pouze po jeho odpojení od zdroje a ponechání dostatečného času na vychladnutí, jak je uvedeno na štítku nebo v návodu k obsluze - a to pouze kvalifikovaným zaměstnancem.

VIGTIGT

Sikkerhedsinstruktion for tilslutning og installering af dette udstyr.

Følgende sikkerhedsinstruktioner gælder specifikt i alle EU-medlemslande. Instruktionerne skal nøje følges for overholdelse af Lavsspændingsdirektivet og bør også følges i ikke EU-lande medmindre andet er specificeret af lokale eller nationale standarder.

- 1. Passende jordforbindelser skal tilsluttes alle jordklemmer, interne og eksterne, hvor disse forefindes.
- 2. Efter installation eller fejlfinding skal alle sikkerhedsdæksler og jordforbindelser reetableres.
- 3. Forsyningskabler skal opfylde krav specificeret i IEC227 eller IEC245.
- 4. Alle ledningstilslutninger skal være konstrueret til omgivelsestemperatur højere end 75°C.
- 5. Alle benyttede kabelforskruninger skal have en intern dimension, så passende kabelaflastning kan etableres.
- 6. For opnåelse af sikker drift og betjening skal der skabes beskyttelse mod indirekte berøring gennem afbryder (min. 10A), som vil afbryde alle kredsløb med elektriske ledere i fejlsituation. Afbryderen skal indholde en mekanisk betjent kontakt. Hvis ikke skal anden form for afbryder mellem forsyning og udstyr benyttes og mærkes som sådan. Afbrydere eller kontakter skal overholde en kendt standard som IEC947.
- 7. Hvor udstyr eller dæksler er mærket med dette symbol, er farlige spændinger normalt forekom-mende bagved. Disse dæksler bør kun afmonteres, når forsyningsspændingen er frakoblet - og da kun af instrueret servicepersonale.
- 8. Hvor udstyr eller dæksler er mærket med dette symbol, forefindes meget varme overflader bagved. Disse dæksler bør kun afmonteres af instrueret servicepersonale, når forsyningsspænding er frakoblet. Visse overflader vil stadig være for varme at berøre i op til 45 minutter efter frakobling.
- 9. Hvor udstyr eller dæksler er mærket med dette symbol, se da i betjeningsmanual for instruktion.
- 10. Alle benyttede grafiske symboler i dette udstyr findes i én eller flere af følgende standarder:- EN61010-1, IEC417 & ISO3864.

11. Når udstyr eller etiketter er mærket "Må ikke åbnes, mens udstyret tilføres strøm" eller lignende, er der fare for antændelse i områder, hvor der er en eksplosiv atmosfære. Dette udstyr må kun åbnes, når strømkilden er fjernet, og der er gået tilstrækkelig tid til, at udstyret er kølet ned. Den nødvendige tid hertil er angivet på etiketten eller i brugervejledningen. Udstyret må kun åbnes af en faglært person.

BELANGRIJK

Veiligheidsvoorschriften voor de aansluiting en installatie van dit toestel.

De hierna volgende veiligheidsvoorschriften zijn vooral bedoeld voor de EU lidstaten. Hier moet aan gehouden worden om de onderworpenheid aan de Laag Spannings Richtlijn (Low Voltage Directive) te verzekeren. Niet EU staten zouden deze richtlijnen moeten volgen tenzij zij reeds achterhaald zouden zijn door plaatselijke of nationale voorschriften.

- 1. Degelijke aardingsaansluitingen moeten gemaakt worden naar alle voorziene aardpunten, intern en extern.
- 2. Na installatie of controle moeten alle veiligheidsdeksels en -aardingen terug geplaatst worden. Ten alle tijde moet de betrouwbaarheid van de aarding behouden blijven.
- 3. Voedingskabels moeten onderworpen zijn aan de IEC227 of de IEC245 voorschriften.
- 4. Alle bekabeling moet geschikt zijn voor het gebruik in omgevingstemperaturen, hoger dan 75°C.
- 5. Alle wartels moeten zo gedimensioneerd zijn dat een degelijke kabel bevestiging verzekerd is.
- 6. Om de veilige werking van dit toestel te verzekeren, moet de voeding door een stroomonderbreker gevoerd worden (min 10A) welke alle draden van de voeding moet onderbreken. De stroomonderbreker mag een mechanische schakelaar bevatten. Zoniet moet een andere mogelijkheid bestaan om de voedingsspanning van het toestel te halen en ook duidelijk zo zijn aangegeven. Stroomonderbrekers of schakelaars moeten onderworpen zijn aan een erkende standaard zoals IEC947.
- 7. Waar toestellen of deksels aangegeven staan met het symbool is er meestal hoogspanning aanwezig. Deze deksels mogen enkel verwijderd worden nadat de voedingsspanning werd afgelegd en enkel door getraind onderhoudspersoneel.
- 8. Waar toestellen of deksels aangegeven staan met het symbool is er gevaar voor hete oppervlakken. Deze deksels mogen enkel verwijderd worden door getraind onderhoudspersoneel nadat de voedingsspanning verwijderd werd. Sommige oppper-vlakken kunnen 45 minuten later nog steeds heet aanvoelen.

- 9. Waar toestellen of deksels aangegeven staan met het symbool gelieve het handboek te raadplegen.
- 10. Alle grafische symbolen gebruikt in dit produkt, zijn afkomstig uit een of meer van devolgende standaards: EN61010-1, IEC417 en ISO3864.
- 11. Op plaatsen waar uitrusting of etiketten zijn voorzien van een melding als "Niet openen bij aanwezigheid van spanning" bestaat er brandgevaar in omgevingen waar een explosieve atmosfeer aanwezig is. Deze uitrusting mag uitsluitend worden geopend wanneer het niet meer onder spanning staat en de uitrusting gedurende de voorgeschreven tijd op het etiket of in de handleiding is afgekoeld - en dan uitsluitend door voldoende opgeleid onderhoudspersoneel.

BELANGRIJK

Veiligheidsinstructies voor de bedrading en installatie van dit apparaat.

Voor alle EU lidstaten zijn de volgende veiligheidsinstructies van toepassing. Om aan de geldende richtlijnen voor laagspanning te voldoen dient men zich hieraan strikt te houden. Ook niet EU lidstaten dienen zich aan het volgende te houden, tenzij de lokale wetgeving anders voorschrijft.

- 1. Alle voorziene interne- en externe aardaansluitingen dienen op adequate wijze aangesloten te worden.
- 2. Na installatie, onderhouds- of reparatie werkzaamheden dienen alle beschermdeksels /kappen en aardingen om reden van veiligheid weer aangebracht te worden.
- 3. Voedingskabels dienen te voldoen aan de vereisten van de normen IEC 227 of IEC 245.
- 4. Alle bedrading dient geschikt te zijn voor gebruik bij een omgevings temperatuur boven 75°C.
- 5. Alle gebruikte kabelwartels dienen dusdanige inwendige afmetingen te hebben dat een adequate verankering van de kabel wordt verkregen.
- 6. Om een veilige werking van de apparatuur te waarborgen dient de voeding uitsluitend plaats te vinden via een meerpolige automatische zekering (min.10A) die alle spanningvoerende geleiders verbreekt indien een foutconditie optreedt. Deze automatische zekering mag ook voorzien zijn van een mechanisch bediende schakelaar. Bij het ontbreken van deze voorziening dient een andere als zodanig duidelijk aangegeven mogelijkheid aanwezig te zijn om de spanning van de apparatuur af te schakelen. Zekeringen en schakelaars dienen te voldoen aan een erkende standaard zoals IEC 947.
- 7. Waar de apparatuur of de beschermdeksels/kappen gemarkeerd zijn met het volgende symbool, kunnen zich hieronder spanning voerende delen bevinden die gevaar op kunnen leveren. Deze beschermdeksels/ kappen mogen uitsluitend verwijderd worden door getraind personeel als de spanning is afgeschakeld.
- 8. Waar de apparatuur of de beschermdeksels/kappen gemarkeerd zijn met het volgende symbool, kunnen zich hieronder hete oppervlakken of onderdelen bevinden. Bepaalde delen kunnen mogelijk na 45 min. nog te heet zijn om aan te raken.

- 10. Alle grafische symbolen gebruikt bij dit produkt zijn volgens een of meer van de volgende standaarden: EN 61010-1, IEC 417 & ISO 3864.
- 11. Op plaatsen waar uitrusting of etiketten zijn voorzien van een melding als "Niet openen bij aanwezigheid van spanning" bestaat er brandgevaar in omgevingen waar een explosieve atmosfeer aanwezig is. Deze uitrusting mag uitsluitend worden geopend wanneer het niet meer onder spanning staat en de uitrusting gedurende de voorgeschreven tijd op het etiket of in de handleiding is afgekoeld - en dan uitsluitend door voldoende opgeleid onderhoudspersoneel.

WICHTIG

Sicherheitshinweise für den Anschluß und die Installation dieser Geräte.

Die folgenden Sicherheitshinweise sind in allen Mitgliederstaaten der europäischen Gemeinschaft gültig. Sie müssen strickt eingehalten werden, um der Niederspannungsrichtlinie zu genügen. Nichtmitgliedsstaaten der europäischen Gemeinschaft sollten die national gültigen Normen und Richtlinien einhalten.

- 1. Alle intern und extern vorgesehenen Erdungen der Geräte müssen ausgeführt werden.
- 2. Nach Installation, Reparatur oder sonstigen Eingriffen in das Gerät müssen alle Sicherheitsabdeckungen und Erdungen wieder installiert werden. Die Funktion aller Erdverbindungen darf zu keinem Zeitpunkt gestört sein.
- 3. Die Netzspannungsversorgung muß den Anforderungen der IEC227 oder IEC245 genügen.
- 4. Alle Verdrahtungen sollten mindestens bis 75°C ih re Funktion dauerhaft erfüllen.
- 5. Alle Kabeldurchführungen und Kabelverschraubungen sollten in Ihrer Dimensionierung so gewählt werden, daß diese eine sichere Verkabelung des Gerätes ermöglichen.
- 6. Um eine sichere Funktion des Gerätes zu gewährleisten, muß die Spannungsversorgung über mindestens 10 A abgesichert sein. Im Fehlerfall muß dadurch gewährleistet sein, daß die Spannungsversorgung zum Gerät bzw. zu den Geräten unterbrochen wird. Ein mechanischer Schutzschalter kann in dieses System integriert werden. Falls eine derartige Vorrichtung nicht vorhanden ist, muß eine andere Möglichkeit zur Unterbrechung der Spannungszufuhr gewährleistet werden mit Hinweisen deutlich gekennzeichnet werden. Ein solcher Mechanismus zur Spannungsunterbrechung muß mit den Normen und Richtlinien für die allgemeine Installation von Elektrogeräten, wie zum Beispiel der IEC947, übereinstimmen.
- 7. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, die eine gefährliche (Netzspannung) Spannung führen. Die Abdeckungen dürfen nur entfernt werden, wenn die Versorgungsspannung unterbrochen wurde. Nur geschultes Personal darf an diesen Geräten Arbeiten ausführen.
- 8. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, in bzw. unter denen heiße Teile vorhanden sind. Die Abdeckungen dürfen nur entfernt werden, wenn die Versorgungsspannung unterbrochen wurde. Nur geschultes Personal darf an diesen Geräten Arbeiten

ausführen. Bis 45 Minuten nach dem Unterbrechen der Netzzufuhr können derartig Teile noch über eine erhöhte Temperatur verfügen.

- 9. Mit dem Symbol sind Geräte oder Abdeckungen gekennzeichnet, bei denen vor dem Eingriff die entsprechenden Kapitel im Handbuch sorgfältig durchgelesen werden mussen.
- 10. Alle in diesem Gerät verwendeten graphischen Symbole entspringen einem oder mehreren der nachfolgend aufgeführten Standards: EN61010-1, IEC417 & ISO3864.
- 11. Wenn Geräte oder Etiketten mit dem Hinweis "Nicht unter Spannung öffnen" oder ähnlichen Hinweisen versehen sind, besteht in explosionsgefährdeten Umgebungen Entzundungsgefahr. Das Gerät darf nur geöffnet werden, wenn es nicht ans Stromnetz angeschlossen und entsprechend der Zeitangaben auf dem Etikett bzw. in der Betriebsanleitung ausreichend abgekuhlt ist. Das Gerät darf nur von geschultem Service-Personal geöffnet werden.

A

ΣΗΜΑΝΤΙΚΟ

Οδηγιεσ ασφαλειασ για την καλωδιωση και εγκατασταση τησ συσκευησ

Οι ακόλουθες οδηγίες ασφαλείας εφαρμόζονται ειδικά για όλες τις χώρες μέλη της Ευρωπαϊκής Κοινότητας. Θα πρέπει να ακολουθούνται αυστηρά ώστε να εξασφαλιστεί η συμβατότητα με τις οδηγίες για τη Χαμηλή Τάση. Χώρες που δεν είναι μέλη της Ευρωπαϊκής Κοινότητας θα πρέπει επίσης να ακολουθούν τις οδηγίες, εκτός εάν αυτές αντικαθίστανται από τα Τοπικά ή Εθνικά πρότυπα.

- Επαρκείς συνδέσεις γείωσης θα πρέπει να γίνονται σε όλα τα σημεία γείωσης, εσωτερικά και εξωτερικά, όπου υπάρχουν.
- Μετά την εγκατάσταση ή την αντιμετώπιση σφαλμάτων, όλα τα καλύμματα ασφαλείας και οι γειώσεις ασφαλείας πρέπει να επανεγκαθίστανται. Η καλή κατάσταση όλων των ακροδεκτών γείωσης πρέπει να συντηρείται διαρκώς.
- Τα καλώδια τροφοδοσίας πρέπει να πληρούν τις απαιτήσεις των IEC227 ή IEC245. 3.
- Όλες οι καλωδιώσεις θα πρέπει να είναι κατάλληλες για χρήση σε θερμοκρασία 4. χώρου υψηλότερη από 75°C.
- Όλοι οι στυπιοθλίπτες θα πρέπει να είναι τέτοιων εσωτερικών διαστάσεων, 5. ώστε να παρέχουν επαρκή στερέωση των καλωδίων.
- Για τη διασφάλιση ασφαλούς λειτουργίας αυτής της συσκευής, η σύνδεση τρο-6. φοδοσίας θα πρέπει να γίνεται μόνο μέσω ασφαλειοδιακόπτη, ο οποίος θα αποσυνδέει όλους τους ηλεκτροφόρους αγωγούς των κυκλωμάτων, στη διάρκεια κατάστασης σφάλματος. Ο ασφαλειοδιακόπτης μπορεί επίσης να περιλαμβάνει μηχανικό διακόπτη απομόνωσης. Εάν δεν περιλαμβάνει, τότε άλλα μέσα αποσύνδεσης της συσκευής από την τροφοδοσία πρέπει να παροχηθούν και να σημανθούν σαφώς ως τέτοια. Οι ασφαλειοδιακόπτες ή διακόπτες πρέπει να συμμορφώνονται με αναγνωρισμένα πρότυπα όπως το ΙΕC947. Όλες οι καλωδιώσεις πρέπει να συμμορφώνονται με τα τοπικά πρότυπα.
- 7. Όπου συσκευές ή καλύμματα είναι σημασμένα με το σύμβολο που εικονίζεται δεξιά, επικίνδυνες τάσεις ενυπάρχουν κάτω από αυτά. Αυτά τα καλύμματα θα πρέπει να αφαιρούνται μόνο όταν έχει αφαιρεθεί η τροφοδοσία από τη συσκευή - και στην περίπτωση αυτή, μόνο από ειδικευμένο τεχνικό προσωπικό.
- Όπου συσκευές ή καλύμματα είναι σημασμένα με το σύμβολο που εικονίζεται δεξιά, υπάρχει κίνδυνος από καυτές επιφάνειες κάτω από αυτά. Τέτοια καλύμματα θα πρέπει να αφαιρούνται μόνο από ειδικευμένο τεχνικό προσωπικό, όταν έχει

αφαιρεθεί η τροφοδοσία από τη συσκευή. Κάποιες επιφάνειες μπορούν να παραμένουν ζεστές στην αφή.

- Όπου συσκευές ή καλύμματα είναι σημασμένα με το σύμβολο που εικονίζεται δεξιά, ανατρέξτε στις οδηγίες χρήσης της συσκευής.
- 10. Όλα τα γραφικά σύμβολα που χρησιμοποιούνται σε αυτό το προϊόν είναι από ένα ή περισσότερα από τα εξής πρότυπα: EN61010-1, IEC417 και ISO3864.
- 11. Όπου συσκευή ή ετικέτα είναι σημασμένη με την ένδειξη "Μην ανοίγετε ενώ βρίσκεται σε λειτουργία" ή άλλη παρόμοια, υπάρχει κίνδυνος ανάφλεξης σε περιοχές με εκρηκτική ατμόσφαιρα. Ο παρών εξοπλισμός πρέπει να ανοίγεται μόνο όταν είναι εκτός ρεύματος και αφού παρέλθει ο κατάλληλος χρόνος που αναγράφεται στην ετικέτα ή στο εγχειρίδιο οδηγιών ώστε να ψυχθεί και μόνο από εκπαιδευμένο προσωπικό συντήρησης.

OLULINE TEAVE

Juhtmestiku ja seadme paigaldamisega seotud ohutusjuhised

Alljärgnevad ohutusjuhised rakenduvad eriti kõigi Euroopa Liidu liikmesriikide suhtes. Antud juhiseid tuleb täpselt järgida, et kindlustada vastavus madalpinge direktiiviga. Euroopa Liitu mittekuuluvad riigid peavad samuti alljärgnevaid juhiseid järgima, va juhul, kui on olemas vastavad kohalikud riiklikud standardid.

- 1. Ettenähtud maanduspunktide, nii sisemiste kui väliste jaoks tuleb tagada nõuetekohased maauhendused.
- 2. Pärast paigaldamist või rikketuvastust tuleb kõik turvaūmbrised ja turvamaandused uuesti oma kohale seada. Kõigis olukordades tuleb säilitada kõigi maandusklemmide terviklikkus.
- 3. Toitejuhtmed peavad vastama IEC227 või IEC245 nõuetele.
- 4. Kogu juhtmestik peab sobima kasutamiseks üle 75°C õhutemperatuuri juures.
- 5. Kõik juhtmetihendid peavad sisemõõtmete poolest tagama nõuetekohased kaabliühendused.
- 6. Seadme ohutu töötamise tagamiseks peab ühendus toiteallikaga toimuma vaid läbi automaatkorgi, mis veaolukorras lülitab välja kõik voolukandjad. Automaatkorgil võib olla ka mehhaaniliselt reguleeritav lahklüliti. Vastasel juhul peab seadme toiteallikast lahtiühendamiseks olema teine ja selgelt osutatud moodus. Automaatkorgid või -lülitid peavad vastama tunnustatud standarditele nagu nt IEC947. Kogu juhtmestik peab vastama kohalikele standard-itele.
- 7. Seadmel või umbristel asuv paremale osutav sumbol tähistab selle all leiduvat ohtlikku pinget. Selliste sumbolitega umbriseid võib eemaldada vaid juhul, kui seade on toiteallikast lahti uhendatud ning ka siis ainult vastavate oskustega spetsialisti poolt.
- Seadmele või umbristele märgitud paremale osutava sumboli all valitseb kuumadest pindadest tulenev oht. Nimetatud sumbolitega umbriseid võib eemaldada vaid vastavate oskustega spetsialist, kui seade on toiteallikast lahti uhendatud. Teatud pinnad võivad puudutamise jaoks liiga kuumad olla.
- 9. Seadmel või umbristel leiduva paremale osutava sumboli korral vt juhiste jaoks Toimimisjuhendit.
- 10. Kõik selle toote juures kasutatavad graafilised sumbolid lähtuvad uhest või enamast järgmistest standarditest: EN61010-1, IEC417 ja ISO3864.
- 11. Kui seadmele või siltidele on kirjutatud "Ärge avage voolutarbimine korral" vms, valitseb plahvatusohtlikus keskkonnas suttimise oht. Seadet võib avada ainult siis, kui toide on lahti uhendatud ning seadmel on võimaldatud sildil või kasutusjuhendis osutatud aja jooksul maha jahtuda -- ning ka sellisel juhul ainult vastavate oskustega spetsialisti poolt.

TÄRKEÄÄ

Turvallisuusohje, jota on noudatettava tämän laitteen asentamisessa ja kaapeloinnissa.

Seuraavat ohjeet pätevät erityisesti EU:n jäsenvaltioissa. Niitä täytyy ehdottomasti noudattaa jotta täytettäisiin EU:n matalajännitedirektiivin (Low Voltage Directive) yhteensopivuus. Myös EU:hun kuulumattomien valtioiden tulee nou-dattaa tätä ohjetta, elleivät kansalliset standardit estä sitä.

- 1. Riittävät maadoituskytkennät on tehtävä kaikkiin maadoituspisteisiin, sisäisiin ja ulkoisiin.
- 2. Asennuksen ja vianetsinnän jälkeen on kaikki suojat ja suojamaat asennettava takaisin paikoilleen. Maadoitusliittimen kunnollinen toiminta täytyy aina ylläpitää.
- 3. Jännitesyöttöjohtimien täytyy täyttää IEC227 ja IEC245 vaatimukset.
- 4. Kaikkien johdotuksien tulee toimia >75°C lämpötil oissa.
- 5. Kaikkien läpivientiholkkien sisähalkaisijan täytyy olla sellainen että kaapeli lukkiutuu kunnolla kiinni.
- 6. Turvallisen toiminnan varmistamiseksi täytyy jännitesyöttö varustaa turvakytkimellä (min 10A), joka kytkee irti kaikki jännitesyöttöjohtimet vikatilanteessa. Suojaan täytyy myös sisältyä mekaaninen erotuskytkin. Jos ei, niin jännitesyöttö on pystyttävä katkaisemaan muilla keinoilla ja merkittävä siten että se tunnistetaan sellaiseksi. Turvakytkimien tai kat-kaisimien täytyy täyttää IEC947 standardin vaatimukset näkyvyydestä.
- 7. Mikäli laite tai kosketussuoja on merkitty tällä merkillä on merkinnän takana tai alla hengenvaarallisen suuruinen jännite. Suojaa ei saa poistaa jänniteen ollessa kytkettynä laitteeseen ja poistamisen saa suorittaa vain alan asian-tuntija.
- Mikäli laite tai kosketussuoja on merkitty tällä merkillä on merkinnän takana tai alla kuuma pinta. Suojan saa poistaa vain alan asiantuntija kun jännite-syöttö on katkaistu. Tällainen pinta voi säilyä kosketuskuumana jopa 45 mi-nuuttia.
- 9. Mikäli laite tai kosketussuoja on merkitty tällä merkillä katso lisäohjeita käyt-töohjekirjasta.
- 10. Kaikki tässä tuotteessa käytetyt graafiset symbolit ovat yhdestä tai useammasta seuraavis-ta standardeista: EN61010-1, IEC417 & ISO3864.
- 11. Jos laitteessa tai tarrassa on merkintä "Älä avaa, kun virta on kytketty" tai vastaava, räjähdysvaarallisissa tiloissa on syttymisen vaara. Nämä laitteet voidaan avata vain silloin, kun virta ei ole kytkettynä ja laitteen on annettu jäähtyä tarrassa tai oppaassa määritetyn ajan. Tällöinkin laitteet saa avata vain koulutettu huoltohenkilökunta

IMPORTANT

Consignes de sécurité concernant le raccordement et l'installation de cet appareil.

Les consignes de sécurité ci-dessous s'adressent particulièrement à tous les états membres de la communauté européenne. Elles doivent être strictement appliquées afin de satisfaire aux directives concernant la basse tension. Les états non membres de la communauté européenne doivent également appliquer ces consignes sauf si elles sont en contradiction avec les standards locaux ou nationaux.

- 1. Un raccordement adéquat à la terre doit être effectuée à chaque borne de mise à la terre, interne et externe.
- 2. Après installation ou dépannage, tous les capots de protection et toutes les prises de terre doivent être remis en place, toutes les prises de terre doivent être respectées en permanence.
- 3. Les câbles d'alimentation électrique doivent être conformes aux normes IEC227 ou IEC245.
- 4. Tous les raccordements doivent pouvoir supporter une température ambiante supérieure à 75°C.
- 5. Tous les presse-étoupes utilisés doivent avoir un diamètre interne en rapport avec les câbles afin d'assurer un serrage correct sur ces derniers.
- 6. Afin de garantir la sécurité du fonctionnement de cet appareil, le raccordement à l'alimentation électrique doit être réalisé exclusivement au travers d'un disjoncteur (minimum 10A.) isolant tous les conducteurs en cas d'anomalie. Ce disjoncteur doit également pouvoir être actionné manuellement, de façon mécanique. Dans le cas contraire, un autre système doit être mis en place afin de pouvoir isoler l'appareil et doit être signalisé comme tel. Disjoncteurs et interrupteurs doivent être conformes à une norme reconnue telle IEC947.
- 7. Lorsque les équipements ou les capots affichent le symbole suivant, cela signifie que des tensions dangereuses sont présentes. Ces capots ne doivent être démontés que lorsque l'alimentation est coupée, et uniquement par un personnel compétent.
- 8. Lorsque les équipements ou les capots affichent le symbole suivant, cela signifie que des surfaces dangereusement chaudes sont présentes. Ces capots ne doivent être démontés que lorsque l'alimentation est coupée, et uniquement par un personnel compétent. Certaines surfaces peuvent rester chaudes jusqu'à 45 mn.
- 9. Lorsque les équipements ou les capots affichent le symbole suivant, se reporter au manuel d'instructions.
- 10. Tous les symboles graphiques utilisés dans ce produit sont conformes à un ou plusieurs des standards suivants: EN61010-1, IEC417 & ISO3864.
- 11. Les équipements comportant une étiquette avec la mention "Ne pas ouvrir sous tension " ou toute autre mention similaire peuvent créer un risque d'incendie dans les environnements explosifs. Ces équipements ne doivent être ouverts que lorsqu'ils sont hors tension et que la durée de refroidissement requise indiquée sur l'étiquette ou dans le manuel d'instructions s'est écoulée. En outre ils ne doivent être ouverts que par un personnel qualifié.

FONTOS

Biztonsági elıírások a készülék vezetékeléséhez és üzembeállításához

A következi biztonsági eliírások kifejezetten vonatkoznak az összes EU-tagállamra. Ezeket szigorúan be kell tartani a Kisfeszültség irányelvnek való megfelelés biztosításához. A nem EU-tagállamok szintén tartsák be a következiket, kivéve ha a helyi és nemzeti szabványok azt másként nem írják eli.

- 1. A megfeleli földelést biztosítani kell az összes rendelkezésre álló földelési ponton, legyen az belsi vagy külsi.
- 2. Az uzembeállítás vagy hibaelhárítás után az összes biztonsági burkolatot és biztonsági földvezetéket ki kell cserélni. A földelikapcsok sértetlenségét mindig biztosítani kell.
- 3. A tápvezetékeknek eleget kell tenniūk az IEC227 vagy IEC245 szabványokban megfogalmazott követelményeknek.
- 4. Az összes vezetéknek alkalmasnak kell lennie a 75 °C-nál magasabb környezeti himérséklet melletti használatra.
- 5. Az összes használt kábelvezeti tömszelencének olyan belsi méretnek kell lennie, hogy biztosítsák a kábelek megfeleli lekötését.
- 6. A berendezés biztonságos mködésének biztosításához az elektromos hálózathoz való csatlakozást csak megszakítón keresztül szabad megvalósítani, amely az összes áramot szállító vezetéket bontja hibahelyzet esetén. A megszakító magában foglalhat egy mechanikusan mködtetheti áramtalanító kapcsolót is. Ellenkezi esetben biztosítani kell a berendezés elektromos hálózatról történi lekapcsolásának más módját, és ezt világosan jelezni kell. A megszakítóknak vagy kapcsolóknak meg kell felelniük egy elismert szabványnak, például az IEC947 szabványnak. Az összes vezetéknek meg kell felelnie az összes helyi szabványnak.
- 7. Ha a berendezés vagy a burkolata a jobb oldalon látható szimbólummal jelzett, alatta valószínleg veszélyes feszültség van jelen. Az ilyen burkolat csak a berendezés áramtalanítása után távolítható el és csak képzett szervizszakember végezheti el.
- 8. Ha a berendezés vagy a burkolata a jobb oldalonlátható szimbólummal jelzett, fenn áll a veszélye, hogy alatta forró felületek találhatóak. Az ilyen burkolatot csak képzett szervizszakember távolíthatja el a berendezés áramtalanítása után. Bizonyos felületek érintésre forróak maradhatnak.
- 9. Ha a berendezés vagy a burkolata a jobb oldalon látható szimbólummal jelzett, tekintse meg az Üzemeltetési útmutató arra vonatkozó utasításait.
- 10. A terméken használt grafikus szimbólumok a következi szabványok legalább egyikébil származnak: EN61010-1, IEC417 és ISO3864.
- 11. Ha a berendezésen vagy a címkéken a "Ne nyissa ki bekapcsolt állapotban" vagy hasonló felhívás szerepel, robbanásveszélyes környezetben fennáll a gyulladás veszélye. Ez a berendezés csak áramtalanítás után nyitható ki, a címkén vagy a kezelési útmutatóbanszerepli, a berendezés lehlését biztosító megfeleli idii ráhagyás után - és csak képzett szervizszakember végezheti el.

IMPORTANTE

Norme di sicurezza per il cablaggio e l'installazione dello strumento.

Le seguenti norme di sicurezza si applicano specificatamente agli stati membri dell'Unione Europea, la cui stretta osservanza è richiesta per garantire conformità alla Direttiva del Basso Voltaggio. Esse si applicano anche agli stati non appartenenti all'Unione Europea, salvo quanto disposto dalle vigenti normative locali o nazionali.

- 1. Collegamenti di terra idonei devono essere eseguiti per tutti i punti di messa a terra interni ed esterni, dove previsti.
- 2. Dopo l'installazione o la localizzazione dei guasti, assicurarsi che tutti i coperchi di protezione siano stati collocati e le messa a terra siano collegate. L'integrità di ciscun morsetto di terra deve essere costantemente garantita.
- 3. I cavi di alimentazione della rete devono essere secondo disposizioni IEC227 o IEC245.
- 4. L'intero impianto elettrico deve essere adatto per uso in ambiente con temperature superiore a 75°C.
- 5. Le dimensioni di tutti i connettori dei cavi utilizzati devono essere tali da consentire un adeguato ancoraggio al cavo.
- 6. Per garantire un sicuro funzionamento dello strumento il collegamento alla rete di alimentazione principale dovrà essere eseguita tramite interruttore automatico (min.10A), in grado di disattivare tutti i conduttori di circuito in caso di guasto. Tale interruttore dovrà inoltre prevedere un sezionatore manuale o altro dispositivo di interruzione dell'alimentazione, chiaramente identificabile. Gli interruttori dovranno essere conformi agli standard riconosciuti, quali IEC947.
- 7. Il simbolo riportato sullo strumento o sui coperchi di protezione indica probabile presenza di elevati voltaggi. Tali coperchi di protezione devono essere rimossi esclusivamente da personale qualificato, dopo aver tolto alimentazione allo strumento.
- 8. Il simbolo riportato sullo strumento o sui coperchi di protezione indica rischio di contatto con superfici ad alta temperatura. Tali coperchi di protezione devono essere rimossi esclusivamente da personale qualificato, dopo aver tolto alimentazione allo strumento. Alcune superfici possono mantenere temperature elevate per oltre 45 minuti.
- 9. Se lo strumento o il coperchio di protezione riportano il simbolo, fare riferimento alle istruzioni del manuale Operatore.
- 10. Tutti i simboli grafici utilizzati in questo prodotto sono previsti da uno o più dei seguenti standard: EN61010-1,IEC417 e ISO3864.
- 11. L'indicazione "Non aprire sotto tensione" o simili sull'apparecchiatura o sulle etichette segnala il pericolo di accensione nelle aree in cui è presente un'atmosfera esplosiva. L'apparecchiatura può essere aperta solo quando l'alimentazione è scollegata ed è trascorso il tempo indicato sull'etichetta o nel manuale delle istruzioni per consentirne il raffreddamento. L'operazione può essere effettuata esclusivamente da personale dell'assistenza qualificato.

SVARBU

šio prietaiso laidų prijungimo ir instaliacijos saugos instrukcijos

Toliau išvardinti saugumo reikalavimai taikomi konkrečiai visoms ES šalims narms. Jų turi būti griežtai paisoma, kad būtų užtikrintai laikomasi Žemos įtampos direktyvos. Ne ES nars taip pat turi laikytis toliau pateikiamų reikalavimų nebent juos pakeičia vietiniai ar Nacionaliniai standartai.

- 1. Turi būti atliktas tinkamas įžeminimas visuose įžeminimo taškuose, vidiniuose ir išoriniuose, kur numatyta.
- 2. Visos apsaugins dangos ir įžemikliai po instaliacijos ar remonto turi būti pakeisti. Visų įžeminimo terminalų vientisumo priežiūra turi būti atliekama nuolat.
- 3. Matinimo tinklo laidai turi atitikti IEC227 ar IEC245 reikalavimus.
- 4. Visi laidai turi būti tinkami naudojimui aplinkos temperatūtoje, aukštesnje nei 75°C.
- 5. Visi naudojamų kabelių riebokšliai turi būti tokių vidinių matmenų, kad būtų galimas tinkamas kabelio pritvirtinimas.
- 6. Saugaus šio prietaiso veikimo užtikrinimui, prijungimas prie maitinimo tinklo turi būti atliekamas tik per automatinį pertraukiklį, kuris atjungs visas grandines nešančius konduktorius linijos gedimo metu. Automatinis pertraukiklis taip pat gali turti mechaniškai veikiantį izoliavimo jungiklį. Jeigu ne, tuomet turi būti nurodytos kitos įrenginio atjungimo priemons, ir aiškai pažymtos, kad jos tokios yra. Automatiniai perjungikliai ar jungikliai turi atitikti pripažintus standartus.
- 7. Kur įrenginys ar dangos yra pažymti simboliu dešinje, žemiau turi būti pavojinga įtampa. Šios dangos turi būti nuimamos tik tada, kai srov÷ yra pašalinta iš įrenginio ir tik tuomet tai turi atlikti apmokytas personalas.
- 8. Ten kur įrenginys ar dangos yra pažymti simboliu dešinje, ten yra pavojus nuo karštų paviršių apačioje. Šios dangos gali būti nuimamos tik apmokyto personalo, kai srov yra pašalinta iš įrenginio. Tam tikri paviršiai gali išlikti karšti liečiant.
- 9. Ten kur įrenginys ar dangos yra pažymti simboliu dšinje, žr. nurodymus Valdymo instrukcijose.
- 10. Visi grafiniai simboliai naudojami šiam produktui yra iš vieno ar daugiau toliau išvardintų standartų: EN61010-1, IEC417, ir ISO3864.
- 11. Ten, kur įrenginys ar etikets yra pažymti "Neatidaryti esant srovs tiekimui" ar panašiai, yra užsidegimo pavojus tose vietose, kur yra sprogstamoji atmosfera. Šis įrenginys gali būti atidarytas tuomet, kai yra pašalinta srov, ir prajęs atitinkamas laikas, nurodytas etiketje ar valdymo instrukcijoje, pakankamas įrenginio ataušimui ir tai tik apmokyto personalo.

SVARĪGI

Drošības norādījumi šīs iekārtas pievienošanai un uzstādīšanai

Turpmākie drošības norādījumi attiecas uz visām ES dalībvalstīm. Tie ir stingri jāievēro, lai nodrošinātu atbilstību Zemsprieguma direktīvai. Turpmāk norādītais jāievēro arī valstīs, kas nav ES dalībvalstis, ja vien šos norādījumus neaizstāj vietējie vai valsts standarti.

- 1. Visi pieejamie iekšējie un ārējie zemējuma punkti ir atbilstoši jāiezemē.
- 2. Pēc uzstādīšanas vai problēmu risināšanas visi drošības pārsegi un drošības zemējuma savienojumi ir jāpievieno atpakaĜ. Visiem zemējuma savienojumiem vienmēr jābūt iezemētiem.
- 3. Elektropadeves vadiem jāatbilst IEC227 vai IEC245 prasībām.
- 4. Visai elektroinstalācijai jābūt piemērotai lietošanai apkārtējā temperatūrā, kas pārsniedz 75°C.
- 5. Visu izmantoto kabeĜu blīvju iekšējiem izmēriem jābūt tādiem, lai atbilstoši nostiprinātu kabeli.
- 6. Lai nodrošinātu šīs iekārtas drošu darbību, savienojums ar elektropadeves tīklu jāizveido, izmantojot slēdzi, kas kūūmes gadījumā atvienos visas ėēdes, kurās ir vadītāji. Slēdzī var būt iestrādāts arī mehānisks pārtraucējslēdzis. Ja tāda nav, tad ir jāuzstāda cita veida ierīce iekārtas atvienošanai no strāvas padeves un tā atbilstoši un skaidri jāmarėē. Slēdžiem jāatbilst kādam vispāratzītam standartam, piemēram, IEC947. Visai elektroinstalācijai jāatbilst vietējiem standartiem.
- 7. Vietās, kur iekārta vai tās pārsegi ir marėēti ar labajā pusē norādīto simbolu, visticamāk, zem tiem ir bīstams spriegums. Šos pārsegus drīkst noĦemt tikai tad, ja iekārta ir atvienota no strāvas padeves, – un šos darbus drīkst veikt tikai atbilstoši apmācīti remontdarbu darbinieki.
- Vietās, kur iekārta vai tās pārsegi ir marėēti ar labajā pusē norādīto 8. simbolu, apdraudējumu izraisa zem tiem esošās karstās virsmas. Šos pārsegus drīkst noĦemt tikai atbilstoši apmācīti remontdarbu darbinieki, kad iekārta ir atvienota no strāvas padeves. Iespējams, dažas virsmas arī pēc iekārtas atvienošanas paliks karstas.
- 9. Ja iekārta vai pārsegi ir marėēti ar labajā pusē esošo simbolu, skatiet operatora rokasgrāmatā ietvertos norādījumus.
- 10. Visi šajā izstrādājumā izmantotie grafiskie simboli atbilst vienam vai vairākiem no šiem standartiem: EN61010-1. IEC417 un ISO3864.
- 11. Ja iekārtai vai uzlīmēm ir marėējums "Neatvērt, kamēr pieslēgta strāvai" vai tamlīdzīga norāde, tas nozīmē, ka sprādzienbīstamā vidē ir uzliesmošanas bīstamība. Šo iekārtu drīkst atvērt tikai tad, ja ir atvienota strāva un ir nogaidīts iekārtas atdzišanai nepieciešamais laiks, kas norādīts uzlīmē vai ekspluatācijas rokasgrāmatā, – un šos darbus drīkst veikt tikai atbilstoši apmācīti remontdarbu darbinieki.

IMPORTANTI

STRUZZJONIJIET TAS-SIGURTÀ GĦALL-WIRING U L-INSTALLAZZJONI TAT-TAGĦMIR

L-istruzzjonijiet tas-sigurtà japplikaw speċifikament għall-Istati Membri ta' I-UE. Dawn għandhom jiġu osservati b'mod strett biex tkun żgurata l- konformità mad-Direttiva dwar il-Vultaġġ Baxx. Stati li mhumiex membri ta' I-UE għandhom ukoll ikunu konformi ma' dan li ġej ħlief jekk dawn ikunu sostituti mill-Istandards lokali jew Nazzjonali.

- 1. Konnessjonijiet adegwati ta' l-ert għandhom isiru għall-punti kollha ta' l-ert, interni u esterni, fejn ikun ipprovdut.
- 2. Wara l-installazzjoni jew meta tipprova ssolvi 6888Xi problema, l-għatjien kollha tas-sigurtà u l-erts tas-sigurtà għandhom jitpoġġew lura f'posthom. L-integrità tat-terminali kollha ta' lert għandha tinżamm f'kull ħin.
- 3. Il-wajers tal-provvista tad-dawl għandhom ikunu konformi ml-ħtiġijiet ta'IEC227 jew IEC245.
- 4. Il-wiring kollu għandu jkun adattat għall-użu f'temperatura ta' l-ambjent ta' iktar minn 75°C.
- 5. Il-glands tal-kejbils kollha li jintużw iridu jkunu ta' daqs intern tali li jipprovdu ankoraġġ adegwat lill-kejbil.
- 6. Biex tiżgura t-tħaddim sigur ta' dan it-tagħmir, il-konnessjoni malprovvistatad-dawl għandha ssir biss permezz ta' circuit breaker li jiskonnettal-kondutturi kollha li jkunu jġorru ċ-ċirkuwiti f'sitwazzjoni metajkun hemm il-ħsara. Is-circuit breaker jista wkoll jinkludi swiċċ li jiżola lijaħdem b'mod mekkaniku. Jekk dan ma jkunx il-każ, mezz ieħor ta' kifit-tagħmir jiġi skonnettjat minn mal-provvista tad-dawl għandu jkunipprovdut, u jkun immrkat b'mod ċar li hu hekk. Is-circuit breakers jewswiċċijiet iridu jkunu konformi ma' standard rikonoxxut bħal IEC947. Ilwiring kollu jrid ikun konformi ma' listandards lokali, jekk ikun hemm.
- 7. Meta t-tagħmir jew l-għatjien ikunu mmarkati bis-simbolu fuq il-lemin, x'aktarx li jkun hemm vultaġġi perikolużi taħthom. Dawn l-għatjien għandhom jitneħħew biss meta titneħħa l-provvista tad-dawl mittagħmir - u minn ħaddiema tal-manutenzjoni mħarrġa biss.
- 8. Meta t-tagħmir jew l-għatjien ikunu mmarkati bis-simbolu fuq il-lemin, ikun hemm periklu mill-uċuħ jaħarqu li jkun hemm taħthom. Dawn lgħatjien għandhom jitneħħew biss minn ħaddiema tal-manutenzjoni mħarrġa meta titneħħa l-provvista tad-dawl mit-tagħmir. Ċerti wċuħ jistgħu jibqgħu jaħarqu meta tmisshom.
- 9. Meta t-tagħmir jew l-għatjien ikunu mmarkati bis-simbolu fuq il-lemin, irreferi għall-Manwal ta' l-Operatur għall-istruzzjonijiet.
- 10. Is-simboli grafići kollha użati f'dan il-prodott huma minn wieħed jew\ iktar mill-istandards li ġejjin: EN61010-1, IEC417, u ISO3864.
- 11. Fejn it-tagħmir u t-tikketti huma mmarkati bil-kliem "Tiftaħx Meta Jkun Enerġizzat" jew kliem simili, hemm periklu ta' nar f'żoni fejn atmosfera esplossiva hi preżenti. It-tagħmir għandu jinfetaħ biss meta l-provvista tad-dawl tkun mitfija u jkun għadda ħin biżżejjed, kif speċifikat fuq it-tikketta jew fil-manwal ta' l-istruzzjonijiet, biex it-tagħmir ikun kesaħ u ttagħmir għandu jinfetaħ biss minn staff li jkun imħarreġ.

114

VIKTIG

Sikkerhetsinstruks for tilkobling og installasjon av dette utstyret.

Følgende sikkerhetsinstruksjoner gjelder spesifikt alle EU medlemsland og land med i EØS-avtalen. Instruksjonene skal følges nøye slik at installasjonen blir i henhold til lavspenningsdirektivet. Den bør også følges i andre land, med mindre annet er spesifisert av lokale- eller nasjonale standarder.

- 1. Passende jordforbindelser må tilkobles alle jordingspunkter, interne og eksterne hvor disse forefinnes.
- 2. Etter installasjon eller feilsøking skal alle sikkerhetsdeksler og jordforbindelser reetableres. Jordingsforbindelsene må alltid holdes i god stand.
- 3. Kabler fra spenningsforsyning skal oppfylle kravene spesifisert i IEC227 eller IEC245.
- 4. Alle ledningsforbindelser skal være konstruert for en omgivelsestemperatur høyere en 75°C.
- 5. Alle kabelforskruvninger som benyttes skal ha en indre dimensjon slik at tilstrekkelig avlastning oppnåes.
- 6. For å oppnå sikker drift og betjening skal forbindelsen tilspenningsforsyningen bare skje gjennom en strømbryter (minimum 10A)som vil bryte spenningsforsyningen til alle elektriske kretser ved en feilsituasjon. Strømbryteren kan også inneholde en mekanisk operert bryter for å isolere instrumentet fra spenningsforsyningen. Dersom det ikke er en mekanisk operert bryter installert, må det være en annen måte å isolere utstyret fra spenningsforsyningen, og denne måten må være tydelig merket. Kretsbrytere eller kontakter skal oppfylle kravene i en annerkjent standard av typen IEC947 eller tilsvarende.
- 7. Der hvor utstyr eller deksler er merket med symbol for farlig spenning, er det sannsynlig at disse er tilstede bak dekslet. Disse dekslene må bare fjærnes når spenningsforsyning er frakoblet utstyret, og da bare av trenet servicepersonell.
- 8. Der hvor utstyr eller deksler er merket med symbol for meget varm overflate, er det sannsynlig at disse er tilstede bak dekslet. Disse dekslene må bare fjærnes når spenningsforsyning er frakoblet utstyret, og da bare av trenet servicepersonell. Noen overflater kan være for varme til å berøres i opp til 45 minutter etter spenningsforsyning frakoblet.
- 9. Der hvor utstyret eller deksler er merket med symbol, vennligst referer til instruksjonsmanualen for instrukser.
- 10. Alle grafiske symboler brukt i dette produktet er fra en eller flere av følgende standarder: EN61010-1, IEC417 & ISO3864.
- 11. Når utstyr eller merkelapper bærer advarselen "Må ikke åpnes under spenning" eller lignende, innbærer det fare for eksplosjon i områder med en eksplosiv atmosfære. Utstyret skal bare åpnes når det ikke er noen strømtilførsel, og etter at det har hatt tilstrekkelig tid til å kjøle ned, som spesifisert på merkelappen eller i håndboken. Selv da skal utstyret bare åpnes av erfarne serviceteknikere.

WAŚNE!

Zalecenia dotyczące bezpieczeństwa w zakresie podłączania i instalacji tego urządzenia

Następujące zalecenia dotyczą zwłaszcza stosowania urządzenia we wszystkich krajach Unii Europejskiej. NaleŜy się ściśle do nich stosować w celu zapewnienia zgodności z dyrektywą niskonapięciową. W przypadku instalacji urządzenia w krajach nienaleŜących do Unii Europejskiej naleŜy równieŜ przestrzegać poniŜszych zaleceń, chyba Ŝe są one zastąpione lokalnymi lub ogólnokrajowymi standardami.

- 1. Urządzenie naleŜy podłączyć kablem uziemiającym do wszystkich punktów uziemienia (wewnętrznych i zewnętrznych).
- Po instalacji lub czynnościach serwisowych naleŜy zamknąć wszystkie pokrywy zabezpieczające i ponownie podłączyć uziemienie. NaleŜy pilnować, by nie doszło do przerwania uziemienia.
- 3. Przewody zasilające powinny być zgodne z wymaganiami normyIEC227 lub IEC245.
- 4. Wszystkie przewody powinny być odpowiednie do uŜytku w środowisku o temperaturze wyŜszej niŜ 75°C.
- 5. Wszystkie dławnice powinny mieć wymiary wewnętrzne zapewniające pewne umocowanie przewodów.
- 6. W celu zapewnienia bezpiecznej pracy urządzenie naleŜy podłączyć do sieci tylko za pośrednictwem wyłącznika automatycznego, który w razie awarii odłączy wszystkie obwody, w których przepływa prąd. Wyłącznik automatyczny moŜe być równieŜ wyposaŜony w mechaniczny odłącznik napięcia. W przeciwnym razie naleŜy zapewnić i jasno oznaczyć inną moŜliwość odłączenia urządzenia od zasilania. Wyłączniki automatyczne oraz odłączniki powinny być zgodne z uznawanymi standardami, takimi jak norma IEC947. Wszystkie przewody muszą być zgodne z lokalnymi przepisami.
- 7. Pod pokrywami lub elementami urządzenia oznaczonymi symbolem pokazanym na rysunku po prawej stronie moŜe występować niebezpieczne napięcie elektryczne. Te pokrywy mogą być zdejmowane tylko po odłączeniu zasilania, wyłącznie przez odpowiednio przeszkolonych pracowników serwisu.

- 8. Pod pokrywami lub elementami urządzenia oznaczonymi symbolem pokazanym na rysunku po prawej stronie znajdują się gorące powierzchnie. Te pokrywy mogą być zdejmowane tylko po odłączeniu zasilania, wyłącznie przez odpowiednio przeszkolonych pracowników serwisu. Niektóre powierzchnie mogą pozostać nagrzane przez pewien czas po odłączeniu zasilania.
- 9. W przypadku sprzętu oraz pokryw oznaczonych symbolem pokazanym na rysunku po prawej stronie naleŜy zapoznać się ze wskazówkami w Instrukcji operatora i stosować się do nich.
- 10. Wszystkie symbole graficzne zastosowane do oznaczenia produktu pochodzą z następujących norm: EN61010-1, IEC417 lub ISO3864.
- 11. Oznaczenie "Nie otwierać, gdy urządzenie jest pod napięciem" lub podobne oznaczenia informują o ryzyku zapłonu w miejscach, gdzie występuje zagroŜenie wybuchem. Urządzenie naleŜy otwierać tylko po odłączeniu zasilania i po upływie czasu na ostygnięcie urządzenia oznaczonego na etykiecie lub w instrukcji obsługi. Urządzenie mogą otwierać wyłącznie odpowiednio przeszkoleni pracownicy serwisu.

IMPORTANTE

Instruções de segurança para ligação e instalação deste aparelho.

As seguintes instruções de segurança aplicam-se especificamente a todos os estados membros da UE. Devem ser observadas rigidamente por forma a garantir o cumprimento da Directiva sobre Baixa Tensão. Relativamente aos estados que não pertençam à UE, deverão cumprir igualmente a referida directiva, exceptuando os casos em que a legislação local a tiver substituído.

- 1. Devem ser feitas ligações de terra apropriadas a todos os pontos de terra, internos ou externos.
- Após a instalação ou eventual reparação, devem ser recolocadas todas as tampas de segurança e terras de protecção. Deve manter-se sempre a integridade de todos os terminais de terra.
- 3. Os cabos de alimentação eléctrica devem obedecer às exigências das normas IEC227 ou IEC245.
- 4. Os cabos e fios utilizados nas ligações eléctricas devem ser adequados para utilização a uma temperatura ambiente até 75°C.
- 5. As dimensões internas dos bucins dos cabos devem ser adequadas a uma boa fixação dos cabos.
- 6. Para assegurar um funcionamento seguro deste equipamento, a ligação ao cabo de alimentação eléctrica deve ser feita através de um disjuntor (min. 10A) que desligará todos os condutores de circuitos durante uma avaria. O disjuntor poderá também conter um interruptor de isolamento accionado manualmente. Caso contrário, deverá ser instalado qualquer outro meio para desligar o equipamento da energia eléctrica, devendo ser assinalado convenientemente. Os disjuntores ou interruptores devem obedecer a uma norma reconhecida, tipo IEC947.
- 7. Sempre que o equipamento ou as tampas contiverem o símbolo, é provável a existência de tensões perigosas. Estas tampas só devem ser retiradas quando a energia eléctrica tiver sido desligada e por Pessoal da Assistência devidamente treinado.

 Sempre que o equipamento ou as tampas contiverem o símbolo, há perigo de existência de superfícies quentes. Estas tampas só devem ser retiradas por Pessoal da Assistência devidamente treinado e depois de a operaia eléctrica ter sido desligada. Algumas superfícies permanecem que

energia eléctrica ter sido desligada. Algumas superfícies permanecem quentes até 45 minutos depois.

- 9. Sempre que o equipamento ou as tampas contiverem o símbolo, o Manual de Funcionamento deve ser consultado para obtenção das necessárias instruções.
- 10. Todos os símbolos gráficos utilizados neste produto baseiam-se em uma ou mais das seguintes normas: EN61010-1, IEC417 e ISO3864.
- 11. Sempre que o equipamento ou as etiquetas apresentarem o aviso "Não abrir quando ligado à corrente" ou semelhante, existe um risco de ignição em atmosferas explosivas. Este equipamento só deve ser aberto depois de desligado da corrente eléctrica e o tempo de arrefecimento adequado especificado na etiqueta ou no manual de instruções ter decorrido. O equipamento só pode ser aberto por técnicos qualificados.

DÔLEŽITÉ

Bezpečnostné pokyny pre zapojenie káblov a inštaláciu tohto prístroja

Nasledovné bezpečnostné pokyny sa vzťahujú konkrétne na všetky členské štáty EÚ. Musia byť striktne dodržané, aby sa zaistila zhoda so Smernicou o nízkom napätí. Štáty, ktoré nie sú členskými štátmi EÚ by mali nasledovné pokyny taktiež dodržiavať, pokiaľ nie sú nahradené miestnymi alebo národnými normami.

- 1. Adekvátne uzemnenia musia byť vykonané na všetkých bodoch uzemnenia, interných aj externých, tam, kde sú poskytnuté.
- Po inštalácii alebo riešení problémov musia byť všetky bezpečnostné kryty a bezpečnostné uzemnenia vymenené. Integrita všetkých uzemňovacích terminálov musí byť vždy zachovaná.
- 3. Káble sieť ového napájania musia byť v zhode s požiadavkami IEC227 alebo IEC245.
- Všetky káblové pripojenia by mali byť vhodné pre používanie v teplote okolia vyššej, ako 75°C.
- 5. Všetky použité káblové priechodky musia mať také vnútorné rozmery, aby poskytovali adekvátne uchopenie kábla.
- 6. Pre zaistenie bezpečnej prevádzky tohto zariadenia musí byť pripojenie k sieť ovému napájaniu zapojené len cez prerušovač obvodu, ktorý počas poruchovej situácie odpojí všetky obvody elektrických vodičov. Prerušovač obvodu by mal obsahovať aj mechanicky ovládaný úsekový vypínač. Ak nie, musí byť poskytnutý iný spôsob odpojenia zariadenia od sieť ového napájania a tento spôsob musí byť zreteľ ne označený. Prerušovače obvodu alebo spínače musia byť v zhode s uznanou normou, ako napr. IEC947. Všetky káblové pripojenia musia vyhovovať akýmkoľvek miestnym normám.
- 7. Tam, kde je zariadenie alebo kryty označené symbolom na pravej strane, sa pravdepodobne nachádza nebezpečné napätie. Tieto kryty by sa mali odoberať len vtedy, keď je zariadenie odpojené od elektrickej energie a len vyškoleným servisným personálom.
- Tam, kde je zariadenie alebo kryty označené symbolom na pravej strane, existuje nebezpečenstvo horúcich povrchov. Tieto kryty by mali byť odstraňované len vyškoleným servisným personálom, pričom je zariadenie odpojené od elektrickej energie. Určité povrchy môžu ostať horúce na dotyk.

V miestach, kde je zariadenie alebo kryty označené symbolom na pravej strane, si kvôli

- pokynom pozrite Operátorskú príručku.
- 10. Všetky obrázkové symboly použité pri tomto produkte zodpovedajú jednej alebo viacerým nasledujúcim normám: EN61010-1, IEC417 a ISO3864.
- 11. V miestach, kde je zariadenie alebo značky označené nápisom "Neotvárať pod elektrickým prúdom" alebo podobné, existuje nebezpečenstvo vznietenia v oblastiach s prítomnosť ou výbušného ovzdušia. Toto zariadenie sa smie otvárať len v prípade odpojenia od elektrického napájania a ponechania zariadenia vychladnúť po dobu uplynutia dostatočného času tak, ako je to uvedené na štítku alebo v návode na použitie a len vyškoleným servisným personálom.

POMEMBNO

Varnostna navodila za povezavo in vgradnjo naprave

Naslednja varnostna navodila veljajo za vse države članice EU. Zaradi zagotovitve skladnosti z nizkonapetostno direktivo morate navodila strogo upoštevati. V državah, ki niso članice EU, je treba upoštevati tudi naslednje smernice, razen če jih ne zamenjujejo lokalni ali nacionalnimi standardi.

- 1. Do vseh ozemljitvenih točk, notranjih in zunanjih, ki so na voljo, morajo biti speljane ustrezne ozemljitvene povezave.
- 2. Po vgradnji ali odpravljanju težav je treba namestiti vse varnostne pokrove in zaščitne ozemljitve. Brezhibnost vseh ozemljitvenih priključkov je treba nenehno preverjati.
- 3. Omrežni napajalni kabli morajo biti skladni z zahtevami standarda IEC227 ali IEC245.
- 4. Vsa napeljava mora biti primerna za uporabi pri temperaturi okolja, višji od 75°C.
- 5. Notranje dimenzije kabelskih tesnilk morajo zagotavljati ustrezno pritrditev kablov.
- 6. Za zagotovitev varnega delovanja opreme mora biti povezava z omrežnim napajanjem vzpostavljena prek odklopnega stikala, ki v primeru napake izklopi vse tokokroge s prevodniki. Odklopno stikalo lahko vključuje tudi mehansko izolacijsko stikalo. V nasprotnem primeru morajo biti zagotovljeni in jasno označeni drugi načini za izklop opreme iz napajanja. Odklopna in druga stikala morajo biti skladna z uveljavljenimi standardi, kot je IEC947. Vsa napeljava mora biti skladna z lokalnimi standardi.
- 7. V opremi ali pod pokrovi, ki so označeni s simbolom na desni, je prisotna nevarna napetost. Te pokrove je dovoljeno odstraniti samo, če je napajanje opreme izklopljeno. To lahko izvaja samo usposobljeno servisno osebje.
- 8. Pri opremi ali pod pokrovi, ki so označeni s simbolom na desni, so prisotne nevarne vroče površine. Te pokrove lahko odstranjuje samo usposobljeno servisno osebje. Napajanje opreme mora biti izklopljeno. Določene površine so lahko vroče.
- 9. Pri opremi ali pokrovih, ki so označeni s simbolom na desni, si za navodila oglejte priročnik za upravljanje.
- 10. Vsi uporabljeni grafični simboli so iz enega ali več naslednjih standardov: EN61010-1, IEC417 in ISO3864.
- 11. Če je na opremi ali oznakah navedeno "Ne odpirajte, če je pod napetostjo" ali podobno opozorilo, je na območjih z eksplozivnim ozračjem prisotna nevarnost vžiga. To opremo je dovoljeno odpirati samo, če je napajanje izklopljeno in je poteklo dovolj časa, da se oprema ohladi, kot je navedeno na oznaki ali v priročniku z navodili. Opremo lahko odpira samo usposobljeno servisno osebje.

IMPORTANTE

Instrucciones de seguridad para el montaje y cableado de este aparato.

Las siguientes instrucciones de seguridad, son de aplicacion especifica a todos los miembros de la UE y se adjuntaran para cumplir la normativa europea de baja tension.

- 1. Se deben preveer conexiones a tierra del equipo, tanto externa como internamente, en aquellos terminales previstos al efecto.
- 2. Una vez finalizada las operaciones de mantenimiento del equipo, se deben volver a colocar las cubiertas de seguridad aasi como los terminales de tierra. Se debe comprobar la integridad de cada terminal.
- 3. Los cables de alimentacion electrica cumpliran con las normas IEC 227 o IEC 245.
- 4. Todo el cableado sera adecuado para una temperatura ambiental de 75ºC.
- 5. Todos los prensaestopas seran adecuados para una fijacion adecuada de los cables.
- 6. Para un manejo seguro del equipo, la alimentacion electrica se realizara a traves de un interruptor magnetotermico (min 10 A), el cual desconectara la alimentacion electrica al equipo en todas sus fases durante un fallo. Los interruptores estaran de acuerdo a la norma IEC 947 u otra de reconocido prestigio.
- 7. Cuando las tapas o el equipo lleve impreso el simbolo de tension electrica peligrosa, dicho alojamiento solamente se abrira una vez que se haya interrumpido la alimentacion electrica al equipo asimismo la intervencion sera llevada a cabo por personal entrenado para estas labores.
- 8. Cuando las tapas o el equipo lleve impreso el simbolo, hay superficies con alta temperatura, por tanto se abrira una vez que se haya interrumpido la alimentacion electrica al equipo por personal entrenado para estas labores, y al menos se esperara unos 45 minutos para enfriar las superficies calientes.
- 9. Cuando el equipo o la tapa lleve impreso el simbolo, se consultara el manual de instrucciones.
- 10. Todos los simbolos graficos usados en esta hoja, estan de acuerdo a las siguientes normas EN61010-1, IEC417 & ISO 3864.

11. Cuando el equipo o las etiquetas tienen la indicación " No abrir mientras reciba energía" u otra similar, existe el peligro de ignición en zonas donde haya un ambiente explosivo. Este equipo sólo debe ser abierto

por personal de servicio cualificado después de apagarlo y dejar pasar el intervalo de tiempo correspondiente indicado en la etiqueta o el manual de instrucciones para que el equipo se enfríe.

VIKTIGT

Säkerhetsföreskrifter för kablage och installation av denna apparat.

Följande säkerhetsföreskrifter är tillämpliga för samtliga EU-medlemsländer. De skall följas i varje avseende för att överensstämma med Lågspännings direktivet. Icke EU medlemsländer skall också följa nedanstående punkter, såvida de inte övergrips av lokala eller nationella föreskrifter.

- 1. Tillämplig jordkontakt skall utföras till alla jordade punkter, såväl internt som externt där så erfordras.
- 2. Efter installation eller felsökning skall samtliga säkerhetshöljen och säkerhetsjord återplaceras. Samtliga jordterminaler måste hållas obrutna hela tiden.
- Matningsspänningens kabel måste överensstämma med föreskrifterna i IEC227 eller IEC245. 3.
- 4. Allt kablage skall vara lämpligt för användning i en omgivningstemperatur högre än 75°C.
- 5. Alla kabelförskruvningar som används skall ha inre dimensioner som motsvarar adekvat kabelförankring.
- 6. För att säkerställa säker drift av denna utrustning skall anslutning till huvudströmmen endast göras genom en säkring (min 10A) som skall frånkoppla alla strömförande kretsar när något fel uppstår. Säkringen kan även ha en mekanisk frånskiljare. Om så inte är fallet, måste ett annat förfarande för att frånskilja utrustningen från strömförsörjning tillhandahållas och klart framgå genom markering. Säkring eller omkopplare måste överensstämma med en gällande standard såsom t ex IEC947.
- 7. Där utrustning eller hölje är markerad med vidstående symbol föreliggerisk för livsfarlig spänning i närheten. Dessa höljen får endast avlägsnas när strömmen ej är ansluten till utrustningen - och då endast av utbildad servicepersonal.
- 8. När utrustning eller hölje är markerad med vidstående symbol föreligger risk för brännskada vid kontakt med uppvärmd yta. Dessa höljen får endast avlägsnas av utbildad servicepersonal, när strömmen kopplats från utrustningen. Vissa ytor kan vara mycket varma att vidröra även upp till 45 minuter efter avstängning av strömmen.
- 9. När utrustning eller hölje markerats med vidstående symbol bör instruktionsmanualen studeras för information.
- 10. Samtliga grafiska symboler som förekommer i denna produkt finns angivna i en eller flera av följande föreskrifter:- EN61010-1, IEC417 & ISO3864.
- 11. För utrustning som markerats med föreskrifter som "Öppna inte när strömmen är på", eller liknande, råder explosionsrisk när det förekommer explosiva ångor. Utrustningen får endast öppnas efter att strömmen stängts av och efter att utrustningen fått svalna under så lång tid som anges i instruktionsboken. Öppnandet får endast utföras av utbildad servicepersonal.

Appendix B: Return of Material

B.1 Returning Material

SERVICE SUPPORT

To expedite the return process outside of the United States, contact the nearest Emerson representative. Within the United States, call the Emerson Instrument and Valves Response Center using the 1-800-654-RSMT (7768) toll-free number. This center, available 24 hours a day, will assist you with any needed information or materials. The center will ask for product model and serial numbers, and will provide a Return Material Authorization (RMA) number. The center will also ask for the process material to which the product was last exposed. Emerson Instrument and Valves Response Center representatives will explain the additional information and procedures necessary to return goods exposed to hazardous substances.

Appendix C: Product Certifications

C.1 European Directive Information

A copy of the EC Declaration of Conformity can be found at the end of the Quick Start Guide. The most recent revision of the EC Declaration of Conformity can be found at Emerson.com/Rosemount.

C.2 Ordinary Location Certification

As standard, the transmitter has been examined and tested to determine that the design meets the basic electrical, mechanical, and fire protection requirements by a nationally recognized test laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

C.3 Installing Equipment in North America

The US National Electrical Code (NEC) and the Canadian Electrical Code (CEC) permit the use of Division marked equipment in Zones and Zone marked equipment in Divisions. The markings must be suitable for the area classification, gas, and temperature class. This information is clearly defined in the respective codes.

C.4 Rosemount 6888Xi Digital Transmitter for General Purpose Locations

C.4.1 USA

FM

Certificate: 3042889

Standards: FM 3810: 2005, ANSI/IEC: 2003, ANSI/EC 60529: 2004

Markings: (1) Type 4X

Special Conditions for Use: Mounting option 01 was not certified to provide Type 4X ingress protection through the panel cut-out opening. The panel mount gasket has not been tested for Type 4X installation.

C.4.1 Canada

CSA

Certificate: 1913435

Standards: CAN//CSA C22.2 No. 61010-1-04, UL 61010-1:2004 (2nd Edition), CAN/CSA-E60079-0:07, CAN/CSA-E60079-1:07, CAN/CSA-C22.2 No.94-M91 (R2001), CAN/CSA C22.2 No. 60529:05, ANSI/ISA-12.00.01-2005 (IEC 60079-0 Mod), ANSI/ISA-12.22.01-2005 (IEC 60079-1 Mod), UL 50 (11th Ed.), IEC 60529 (Edition 2.1-2001-02), NEMA 250-2003

Markings: Type 4X, IP66

C.4.1 Europe

TUVRheinland QAL1 Certificate: 0000038506 Standards: EN15267-1:2009, EN15627-2:2009, EN15627-3:2007, EN14181:2004

MCERTS

Certificate: Sira MC140270/00 Standards: EN15267-1:2009, EN15627-2:2009, EN15627-3:2007, EN14181:2004

Index

Α

AC Relay Board	
Replacement	85
Alarm Relay Output	
Configuration	55
Analog Output Configuration	57
Asset Management Solutions	95
Autocalibration setup	58
Automatic Calibration	5

В

By-Pass Package95

С

Calibration	5, 54, 58,
59, 62, 67, 68, 74, 75, 76, 8	0, 93, 96, 98
Calibration Gas Bottles	10, 75, 93
Calibration Gases	2, 5,
36, 37, 71, 74, 76, 97	
Calibration Methods	62, 63, 79

D

D/A Trim Methods - Simplified68, 6	59
DR Board Replacement9	0
DR Board Wiring,	
Left-Hand Side9)2
DR Board Wiring,	
Right-Hand Side9)1

Ε

Electrical Noise	72
Electrostatic Discharge	72
Error Conditions, Display	27
Essential Instructions	i

F

Flame Safety Interlock55

G	
Grounding	16, 55, 56, 83, 86

н		
HART	40, 53-61, 65	, 67, 95

I

I/O & AC Relay Board Flame	
Safety Interlock Wiring80	6
I/O and AC Relay Board	
Position8	7
I/O Board Positions84	4
I/O Board Jumpers26, 82, 80	6
IMPS 40005, 26, 58, 62, 80, 9	7
Installation, Electrical1	5
Installation, Manual12	2

М

Maintenance	.79
Maintenance Intervals	.79
Manual Calibration	.80

0

80
39, 71
, 67, 95
71
1-5

Р

Power Supply Board
Replacement6-11
Power Supply Board Wiring6-11
Probe Parameter
Descriptions4-8

R

n	
Replacement Parts	.81, 93
Replacement Parts,	
Calibration Components	93
Replacement Parts, 6888Xi	
Advanced Electronics	93
Returning Material	122

s

•	5	
	Service79)
7	Set Test Gas Values48	5
4	Specifications	5
6	SPS 4001B96	;
7	Startup and Operation25-68	5
5	Startup Display26	;
2	Support Hotline2	,
	System Configuration4	ł
	System Description3	5
9	System Parameter	
9	Descriptions40)
0		

Т	
Traditional Architecture	
Drobo Connections	

in a an interest and	
Probe Connections	5, 16
Troubleshooting, General	71-76
Operating Principles	71
Typical System Installation	12
Typical System Package	3

Х

6888Xi Components Exploded View .80
6888Xi Components Replacement81
6888Xi Controls27
6888Xi Front Panel Components80
6888Xi Front Panel Replacement88
6888Xi Menu27, 48
6888Xi Mounting Details13
6888Xi Power Connections15
6888Xi Signal Connections12-15

www.Emerson.com/RosemountGasAnalysis

Youtube.com/user/RosemountMeasurement

Twitter.com/Rosemount_News

Analyticexpert.com

facebook.com/Rosemount

Emerson Automation Solutions

8200 Market Blvd Chanhassen, MN 55317 USA Tel +1 800 999 9307 Fax +1 952 949 7001 gas.csc@emerson.com ©2017 Emerson Automation Solutions. All rights reserved.

The Emerson logo is a trademark and service mark of Emerson Electric Co. Rosemount is a mark of one of the Emerson family of companies. All other marks are the property of their respective owners.

The contents of this publication are presented for information purposes only, and while effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, expressed or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.

