

HINDLE VÁLVULAS DE BOLA ULTRA-SEAL - SERIE 300

Una gama de válvulas de dos piezas de bola flotante (soportada por asiento) de paso total, embridadas, que incorporan dimensiones de montaje s/. BS EN 15081, exhibiendo diseños de asientos blandos, metálicos y de carbono

DISEÑO DEL ASIENTO

Hay tres diseños de asiento en la gama de válvulas de dos piezas Ultra-Seal Serie 300.

- Diseño de asiento blando de PTFE para servicio no abrasivo.
- Diseño de asiento de carbono duro para aplicaciones limpias.
- Diseño de asiento metálico para servicio abrasivo.

También está disponible una gama de válvulas de una pieza Ultra-Seal Series 110/200 de paso reducido.

GAMA DE DISEÑOS

Paso total NPS $\frac{1}{2}$ - 8 (DN 15 - 200) Clase ANSI 150 y 300 dependiendo del diseño del asiento.

Opción

También está disponible una gama de válvulas de bola de una sola pieza con asiento blando de paso total.

CARACTERÍSTICAS

- Construcción de cuerpo embridado de dos piezas de paso total en acero al carbono, inoxidable y aleaciones especiales.
- Diseño s/. ASME B16.34, BS EN ISO 17292 e ISO 14313/API 6D.
- Diseño de bola flotante para cierre bidireccional.
- Diseño de asiento blando flexionable para un cierre óptimo a través de una gama de presiones con un par de trabajo mínimo.
- Diseños para bajas temperaturas y criogénicos para servicio hasta -196°C disponibles bajo pedido.
- Diseños de asientos metálicos y de carbono energizados por elemento elástico que permiten un cierre estanco y el alivio de la presión de la cavidad.
- Diseños de asiento y bola revestidos de aleación dura de níquel fundido, de carburo de cromo o de carburo de tungsteno para servicios abrasivos y para altas temperaturas.
- Diseño de asiento con carbono duro para aplicaciones de temperaturas intermedias.
- Cierre del eje de alta integridad que minimiza el potencial de emisiones a la atmósfera.
- Comportamiento respecto a emisiones s/. BS EN ISO 15848-2 clase A.
- Internos resistentes a la corrosión. Las válvulas de serie incorporan bolas y ejes de acero inoxidable para una larga vida de servicio.
- Certificación de prueba al fuego. Todos los tamaños y todas las presiones nominales gozan de certificaciones homologadas.
- Diseño de eje antiestático y a prueba de expulsión.
- La mayoría de los diseños ofrecen alivio de presión de la cavidad hacia aguas arriba en caso de expansión térmica.
- Susceptible de integración en un ambiente de sistema de instrumentación de seguridad SIL 3.

APLICACIONES DE LAS VÁLVULAS

Las válvulas de bola Ultra-Seal son ideales para su uso en una amplia variedad de industrias, incluyendo la industria petroquímica, la química, petróleo y gas, GNL y marinas con una diversidad de diseños de asiento.

Aplicaciones con asientos de PTFE	Temperaturas criogénicas hasta -196°C y servicios no abrasivos hasta 230°C dependiendo del grado del material. Servicio de vacío hasta 0,1 mbar.A.
Aplicaciones de asientos de carbono	Servicio limpio desde -20°C hasta 300°C, idóneo para su uso con solventes orgánicos. Ideales para ácido tereftálico purificado (PTA).
Aplicaciones de asientos metálicos	Servicios limpios o abrasivos desde -50°C hasta 450°C y/o aplicaciones donde se necesite de un alivio de la cavidad junto

Disponibilidad de válvulas de una pieza de asiento blando de tamaños NPS $\frac{1}{2}$ - 16 (DN 15 - 400) de paso reducido Series 110/200. Válvula con asiento metal/carbono tamaños NPS 1 - 6 (DN 25 - 150) de paso reducido. Disponibles también en una pieza en las Series 110/200.

GAMA DE DISEÑOS DE ASIENTOS DE VÁLVULAS

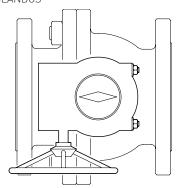
		NPS 1/2 - 2	NPS 3 - 6	NPS 8
Clase	Tipo de asiento	DN 15 - 50	DN 80 - 150	DN 200
150	Blando	✓	✓	✓
	Metal/Carbono	✓	✓	
300	Blando	✓	✓	✓
	Metal/Carbono	✓	✓	

ESPECIFICACIONES TÉCNICAS

Diseño	BS EN ISO 17292 (BS 5351)	ISO 14313/API 6D ^[2]
	BS EN 1983	ASME B16.34
Avance ^[1]	BS EN 558	ASME B16.10
Ensayo de fuego	BS EN ISO 10497	
Ensayo de presión	BS ISO 5208	API 598
	BS EN 12266-1	ISO 14313/API 6D ^[2]
Certificación de materiales	BS EN 10204	NACE MR 0175-2002 MR0103 e ISO 15156-2:2003 bajo pedido
Aseguramiento de calidad	EN 29001 BS EN ISO 9001-2008	
Detalles de la Brida de montaje de actuador ISO	BS EN 15081	

NOTAS

- 1. Disponibles en diseños largos y cortos.
- Cumplimiento de ISO 14313/API 6D limitado a todas las válvulas de clase 150 y a la clase 300 hasta NPS 6 (DN 150).


OPERADOR ESTÁNDAR PARA ASIENTOS BLANDOS

		Palanca	Barra en «T»	Reductor	
Class 150	NPS	1/2- 2	3 - 6	8	
	DN	15 - 50	80 - 150	200	
Class 300	NPS	1/2 - 2	3 & 4	6 & 8	
	DN	15 - 50	80 & 100	150 & 200	

OPERADOR ESTÁNDAR PARA ASIENTOS METAL/CARBONO

		Palanca	Barra en «T»	Reductor
Class 150	NPS	1/2 - 2	3 - 6	4 - 6
	DN	15 - 50	80	100 - 150
Class 300	NPS	1/2 - 2		3 - 6
	DN	15 - 50		80 - 150

OPERADOR ESTÁNDAR PARA ASIENTOS BLANDOS

AVANCE ESTÁNDAR ASME B16.10/BS EN 558 CLASE 150

NPS	DN	Corto	Largo
1/2 - 11/2	15 - 40	✓	✓
2	50	✓	✓
3	80	✓	✓
4	100	✓	✓
6	150	✓	
8	200	✓	

AVANCE ESTÁNDAR ASME B16.10/BS EN 558 CLASE 300

NPS	DN	Corto	Largo
1/2 - 11/2	15 - 40	✓	✓
2	50	✓	✓
3	80	✓	✓
4	100	✓	✓
6	150	✓	
8	200		✓

NOTA

Estas tablas identifican la longitud estándar de avance de las válvulas de bola Ultra-Seal. Hay disponibilidad de distintos diseños de longitud bajo pedido.

CARACTERÍSTICAS DE DISEÑO DE LAS VÁLVULAS CON ASIENTO BLANDO

Las válvulas de bola con asiento blando Ultra-Seal utilizan asientos de PTFE para una máxima compatibilidad química junto a un mínimo coeficiente de fricción.

Temperaturas

Apropiadas para una gama de temperaturas para servicios no abrasivos entre -196°C y 230°C, dependiendo del material del asiento.

Diseño del asiento

Los anillos del asiento incorporan un diseño de flexión que asegura un cierre efectivo en toda la gama de presiones, incluso a bajos diferenciales de presión. Las ranuras en el diámetro externo aseguran una ecualización de la presión entre aguas arriba y la cavidad de la válvula, reduciendo la carga sobre el asiento aguas abajo y minimizando los pares operativos.

Fugas en el asiento

El diseño de bola flotante proporciona un cierre estanco en ambas direcciones s/. BS ISO 5208 tasa A

Emisiones

Unos cierres del eje de alta integridad dan unas buenas prestaciones con bajas emisiones, incluso bajo ciclado térmico. Ensayadas y homologadas s/. Shell MESC SPE 77/312 clase A hasta DN 40, NPS 1½ y clase B para tamaños DN 50, NPS 2 y superiores. Cumple el criterio de fugas de BS EN ISO 15848-2 clase A.

CARACTERÍSTICAS DE DISEÑO DE LAS VÁLVULAS CON ASIENTO METÁLICO

Las válvulas de bola Ultra-Seal con asiento metálico incorporan una tecnología probada de asientos metálicos junto con unos avanzados revestimientos de bola y asiento, materiales elásticos y cierres con bajas emisiones.

Temperaturas

Idóneas para una gama de temperaturas de servicio entre -50°C y 450°C para fluidos que transporten partículas abrasivas y donde se precisa de un alivio efectivo de la cavidad. Para temperaturas por encima de 300°C, hay disponibles bonetes de disipación térmica para el aislamiento del collarín fuera del área calorífuga. Consultar la página 4 para las longitudes mínimas de los bonetes.

Revestimientos

Está disponible una gama de materiales para revestimiento de bola y asiento que proporcionan valores de dureza desde 60 HRc hasta 75 HRc y grosores de revestimiento entre 500 µm y 200 µm.

Diseño del asiento

El diseño del cuerpo y del asiento asegura una compresión controlada del elemento elástico, lo que proporciona un óptimo comportamiento del asiento y del cierre, junto con un par de carrera constante.

Los cierres del muelle y del asiento están protegidos del flujo principal para impedir atascos y un fallo prematuro del asiento.

Fugas en el asiento

El diseño de asiento activo proporciona un cierre bidireccional fiable s/. BS ISO 5208 tasa A en tamaños de hasta DN 50, NPS 2 y tasa B para DN 80, NPS 3 y superiores. Las tasas de fugas s/. ANSI/FCI 70-2 son también aplicables a la clase VI hasta DN 50, NPS 2 y a la clase V para DN 80 y más allá.

Emisiones

Los cierres de alta integridad del eje proporcionan unas prestaciones de bajas emisiones, incluso bajo ciclado térmico. Ensayadas y homologadas s/. Shell MESC SPE 77/312 clase A y cumplen las prestaciones para fugas de BS EN ISO 15848-2 clase A.

CARACTERÍSTICAS DE DISEÑO DE LAS VÁLVULAS CON ASIENTO DE CARBONO

Incorporan una tecnología de diseño similar a la gama de válvulas de bola con asiento metálico, incluyendo materiales elásticos y cierres con bajas emisiones.

Temperaturas

Apropiadas para una gama de temperaturas de servicio entre -20°C y 300°C para su uso con disolventes orgánicos limpios incluyendo PTA. No se recomiendan para fluidos que transporten partículas abrasivas. Hay bonetes disipadores de calor para el aislamiento del collarín fuera del área calorífuga.

Diseño del asiento

Los asientos de carbono grafito se montan en receptáculos de asiento mediante ajuste por control térmico. Esto asegura un correcto soporte del material del asiento durante las condiciones de servicio.

Fugas en el asiento

El diseño activo da un cierre estanco fiable en ambas direcciones s/. BS ISO 5208 tasa A.

Emisiones

Los cierres de alta integridad del eje proporcionan unas prestaciones de bajas emisiones, incluso bajo ciclado térmico. Ensayadas s/. Shell MESC SPE 77/312 clase A y cumplen las prestaciones de fugas de BS EN ISO 15848-2 clase A.

CARACTERÍSTICAS DE DISEÑO PARA SERVICIO CRIOGÉNICO

Las válvulas de bola de Hindle son líderes reconocidos en el campo de las aplicaciones para temperaturas bajas y criogénicas, con más de veinte años de experiencia en este sector especializado del mercado. La experiencia de Hindle incluye muchos y sustanciales contratos internacionales para válvulas para bajas temperaturas y criogénicas, que incluyen diversos grandes proyectos en plantas de gas natural licuado (GNL), para usuarios importantes y contratistas de ingeniería en todo el mundo.

Las válvulas de bola criogénicas Ultra-Seal tienen la homologación por ensayo de Shell GSI

y constan en la base de datos Shell TAMAP.

Extensiones

Se monta un bonete de extensión de una sola pieza para relocalizar el cierre del eje alejándolo del área fría y para proporcionar una columna de presión dentro de la que la fase líquida fría se transforma, por transferencia de calor con el medio ambiente, a la fase gaseosa. La extensión permite también el aislamiento del cuerpo de la válvula. Hindle ofrece dos longitudes para extensión para cada tamaño de la válvula, siguiendo las especificaciones de Shell.

Alivio de la cavidad

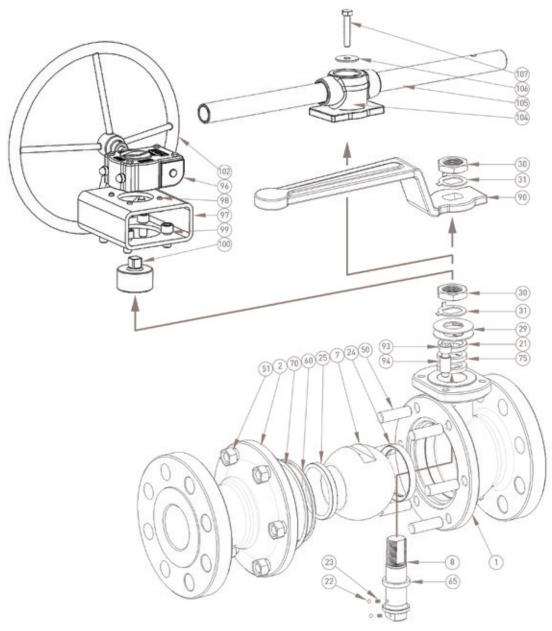
Para temperaturas por debajo de -50°C se proporciona un orificio ecualizador de presión en la bola en el extremo aguas arriba (extremo del manguito), para proporcionar un alivio efectivo de la cavidad. Esto transforma la válvula en unidireccional, y el cuerpo va marcado de forma correspondiente.

Par operativo

El servicio de baja temperatura exige un par operativo superior y puede que se precise de reductores en lugar de operadores manuales de palanca. Por cuanto la temperatura es sólo uno de los factores que afectan al par operativo, se aconseja a los clientes que proporcionen todos los detalles junto con sus pedidos.

Collares de goteo

Los clientes pueden especificar el montaje de collares / bandejas de goteo, que minimizan la acumulación de hielo sobre la extensión y previenen posibles daños al dispositivo calorífugo.

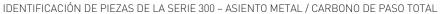

Ensayo de aceptación

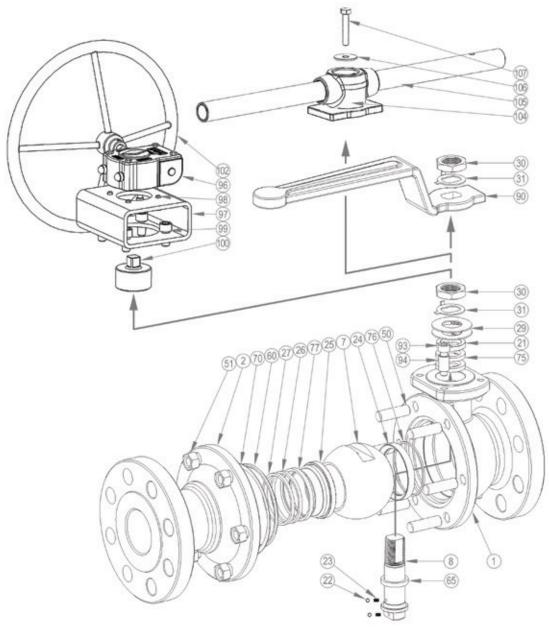
Unas instalaciones especializadas del suministrador permiten el ensayo de las prestaciones de la válvula a temperaturas criogénicas, según normas internacionales principales o según los requisitos individuales del cliente.

LONGITUDES DEL BONETE DE EXTENSIÓN

			Extension length									
Tamaño de	válvula		-30°C a	-109°C	-110°C a	a -196°C						
DN	NPS	Clase	pulg	mm								
15 - 20	1/2 - 3/4	150	4	100	8	200						
		300	4	100	8	200						
25 - 50	1 - 2	150	5	125	10	250						
		300	5	125	10	250						
80 - 100	3 - 4	150	6	150	12	300						
80	3	300	6	150	12	300						
150 - 200	6 - 8	150	7	175	14	350						
100 - 200	4 - 8	300	7	175	14	350						

IDENTIFICACIÓN DE PIEZAS DE LA SERIE 300 – PASO TOTAL CON ASIENTO BLANDO

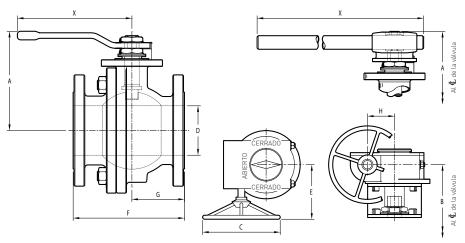



LISTA DE PIEZAS

LISTADE	PIEZAS				
Artículo	Componente	Artículo	Componente	Artículo	Componente
1	Cuerpo	31	Arandela de lengüeta	97	Brida de montaje
2	Conector	50	Espárrago prisionero del cuerpo	98	Tornillo del reductor
7	Bola	51	Tuerca del cuerpo	99	Tornillo del soporte
8	Eje	60	Cierre primario del cuerpo	100	Acoplamiento
21	Collar del collarín	65	Cierre primario del eje	102	Volante
22	Bola antiestática del eje	70	Cierre del cuerpo seguro al fuego	104	Adaptador de barra en «T»
23	Muelle antiestático del eje	75	Cierre del eje seguro al fuego	105	Tubo de barra en «T»
24	Asiento del cuerpo	90	Palanca manual	106	Arandela de la barra en «T»
25	Asiento del conector	93	Tornillo de tope	107	Tornillo de la barra en «T»
29	Muelle del collarín	94	Aro de retención		
30	Tuerca del eie	96	Reductor		

NOTAS

1. Los materiales estándar de construcción aparecen en la página 10.


LISTA DE PIEZAS

LISTADLI	122/10				
Artículo	Componente	Artículo	Componente	Artículo	Componente
1	Cuerpo	30	Tuerca del eje	93	Tornillo de tope
2	Conector	31	Arandela de lengüeta	94	Aro de retención
7	Bola	50	Espárrago prisionero del cuerpo	96	Reductor
8	Eje	51	Tuerca del cuerpo	97	Brida de montaje
21	Collar del collarín	60	Cierre primario del cuerpo	98	Tornillo del reductor
22	Bola antiestática del eje	65	Cierre primario del eje	99	Tornillo del soporte
23	Muelle antiestático del eje	75	Cierre antifuego del eje	100	Acoplamiento
24	Asiento del cuerpo	76	Cierre del asiento del cuerpo	102	Volante
25	Asiento del conector	77	Cierre del asiento del conector	104	Adaptador de barra en «T»
26	Energizador del asiento	90	Palanca manual	105	Tubo de barra en «T»
27	Muelle del asiento	91	Arandela de la palanca manual	106	Arandela de la barra en «T»
29	Muelle del collarín	92	Tornillo de la palanca manual	107	Tornillo de la barra en «T»

NOTAS

- 1. Los materiales estándar de construcción aparecen en la página 10.
- 2. Disponibilidad de bonetes de disipación térmica para el aislamiento del collarín fuera del área calorífuga.

DIMENSIONES DE LA SERIE 300 - ASIENTO BLANDO DE PASO TOTAL

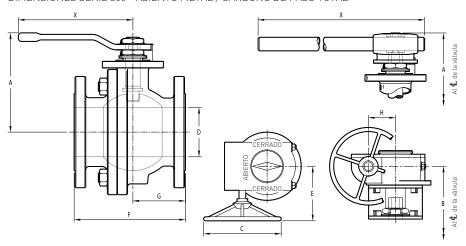
CLASE 150 - MODELO 315F

Tamai	maño A		io A		A B		3	С			D		E		F G		G F		Н		X	Peso
NPS	DN	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	kg		
1/2	15	47/32	107.2	-	-	-	-	1/2	12.7	-	-	41/4	108.0	13/4	44.5	-	-	61/4	158.8	2.1		
3/4	20	41/2	114.3	-	-	-	-	3/4	19.1	-	-	45/8	117.5	2	50.8	-	-	61/4	158.8	3.2		
1	25	411/16	119.1	-	-	-	-	1	25.4	-	-	5	127.0	2	50.8	-	-	61/4	158.8	4.0		
11/2	40	59/16	141.3	-	-	-	-	11/2	38.1	-	-	61/2	165.1	25/8	67.5	-	-	711/16	195.3	7.4		
2	50	71/16	179.4	-	-	-	-	2	50.8	-	-	7	177.8	3	76.2	-	-	103/8	263.5	12.9		
3	80	81/8	205.9	-	-	-	-	3	76.2	-	-	8	203.2	33/4	95.3	-	-	20	508.0	27.3		
4	100	811/16	220.1	-	-	-	-	4	101.6	-	-	9	228.6	41/4	108.0	-	-	20	508.0	42.5		
6	150	113/16	284.5	-	-	-	-	6	152.4	-	-	101/2	266.7	51/4	133.4	-	-	261/2	673.1	80.2		
8	200	-	-	1711/16	448.5	7.87	200	8	203.2	115/16	288	18	457.2	8	203.2	2.8	71	-	-	125.0		

CLASE 300 - MODELO 330F

Tamai	ìo	Α		A		В		в с		D		E			F		G		Н		X	Peso
NPS	DN	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	kg		
1/2	15	47/32	107.2	-	-	-	-	1/2	12.7	-	-	51/2	139.7	17/8	47.6	-	-	61/4	158.8	2.6		
3/4	20	41/2	114.3	-	-	-	-	3/4	19.1	-	-	6	152.4	21/4	57.2	-	-	61/4	158.8	4.3		
1	25	411/16	119.1	-	-	-	-	1	25.4	-	-	61/2	165.1	25/8	66.7	-	-	61/4	158.8	5.8		
11/2	40	5%16	141.3	-	-	-	-	11/2	38.1	-	-	71/2	190.5	25/8	66.7	-	-	711/16	195.3	10.7		
2	50	71/16	179.4	-	-	-	-	2	50.8	-	-	81/2	215.9	3	76.2	-	-	103/8	263.5	15.8		
3	80	81/8	205.9	-	-	-	-	3	76.2	-	-	111/8	282.6	33/4	95.3	-	-	20	508.0	36.3		
4	100	811/16	220.1	-	-	-	-	4	101.6	-	-	12	304.8	6	152.0	-	-	20	508.0	53.5		
6	150	-	-	-	-	15¾	400	6	152.4	1015/16	278	157/8	403.2	55/8	142.9	2.8	71	-	-	122.0		
8	200	-	-	173/4	450.8	235/8	600	8	203.2	12	305	161/2	419.1	8	203.2	3.4	86	-	-	175.0		

NOTAS


Asiento Blando Serie 300

Gama de tamaños: Clase 150/300 NPS ½ - 8 (DN 15 - 200)

*in. = pulg

- 1. El tipo de operador que se suministra de serie, para cada tamaño de válvulas, se da en la página 2.
- 2. Las dimensiones de avance (F en la tabla) son s/. ASME B16.10 y BS EN 558. Los detalles de los diseños estándar aparecen en la página 3.
- 3. Los detalles de la brida de montaje del operador se dan en la página 9.
- 4. Las dimensiones de la brida son s/. ASME B16.5.

DIMENSIONES SERIE 300 - ASIENTO METAL / CARBONO DE PASO TOTAL

CLASE 150 - MODELO 315FM/315FC

Tama	ño	1	4	В	3	C	;		D	Е			F		G	- 1	Н	2	X	Peso
NPS	DN	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	kg
1/2	15	47/32	107.2	-	-	-	-	1/2	12.7	-	-	41/4	108.0	13/4	44.5	-	-	61/4	158.8	2.1
3/4	20	41/2	114.3	-	-	-	-	3/4	19.1	-	-	45/8	117.5	2	50.8	-	-	61/4	158.8	3.2
1	25	411/16	119.1	-	-	-	-	1	25.4	-	-	5	127.0	2	50.8	-	-	61/4	158.8	4.0
11/2	40	5%/16	141.3	-	-	-	-	11/2	38.1	-	-	61/2	165.1	25/8	67.5	-	-	711/16	195.3	7.4
2	50	71/16	179.4	-	-	-	-	2	50.8	-	-	7	177.8	3	76.2	-	-	103/8	263.5	12.9
3	80	81/8	205.9	-	-	-	-	3	76.2	-	-	8	203.2	33/4	95.3	-	-	20	508.0	27.3
4	100	-	-	101/2	266.7	15¾	400	4	101.6	1015/16	278	9	228.6	41/4	108.0	2.8	71	-	-	52.5
6	150	-	-	125/16	313	291/2	750	6	152.4	12	305	101/2	266.7	51/4	133.4	3.4	86	-	-	95.2

CLASE 300 - MODELO 330FM/330FC

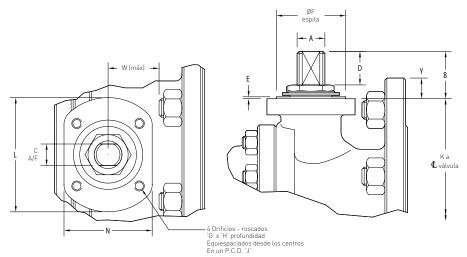
CLAJI	- 300 - I	TODEL	J JJUI 1	17 3301	C															
Tamai	ňo		A	В	}	С			D	E			F		G	- 1	Н	2	X	Peso
NPS	DN	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	in.*	mm	kg
1/2	15	47/32	107.2	-	-	-	-	1/2	12.7	-	-	51/2	139.7	17/8	47.6	-	-	61/4	158.8	2.6
3/4	20	41/2	114.3	-	-	-	-	3/4	19.1	-	-	6	152.4	21/4	57.2	-	-	61/4	158.8	4.3
1	25	411/16	119.1	-	-	-	-	1	25.4	-	-	61/2	165.1	25/8	66.7	-	-	61/4	158.8	5.8
11/2	40	59/16	141.3	-	-	-	-	11/2	38.1	-	-	71/2	190.5	25/8	66.7	-	-	711/16	195.3	10.7
2	50	71/16	179.4	-	-	-	-	2	50.8	-	-	81/2	215.9	3	76.2	-	-	103/8	263.5	15.8
3	80	-	-	97/8	250.8	11 ¹³ / ₁₆	300	3	76.2	10	254	111/8	282.6	33/4	95.3	2.8	71	-	-	46.3
4	100	-	-	101/2	266.7	1911/16	500	4	101.6	115/16	288	12	304.8	6	152.0	2.8	71	-	-	122.0
6	150	-	-	1213/16	313.0	235/8	600	6	152.4	151/4	387	157/8	403.2	55/8	142.9	5.1	130	-	-	175.0

NOTAS

Serie 300 Asiento Metal / Carbono

Tamaños: Clase 150/300 NPS ½ - 6 (DN 15 - 150)

*in. = pulg


- 1. El tipo de operador que se suministra de serie, para cada tamaño de válvulas, se da en la página 2.
- 2. Las dimensiones de avance (F en la tabla) son s/. ASME B16.10 y BS EN 558. Los detalles de los diseños estándar aparecen en la página 3.
- 3. Los detalles de la brida de montaje del operador se dan en la página 9.
- 4. Las dimensiones de la brida son s/. ASME B16.5.

DIMENSIONES DE LA CONEXIÓN SUPERIOR

Tamaño	de la válvula		Α	E	3			1	D	E	=		F	
DN	NPS	Brida tipo ISO	mm	pulg	mm	pulg	mm	pulg	mm	pulg	mm	pulg	mm	G
15	1/2	F03	M12 x 1.25	0.787	20	0.315	8.00	0.437	11.00	0.078	2.0	0.984	25.00	M5
						0.313	7.92					0.974	24.75	
20	3/4	F04	M14 x 1.25	0.984	25	0.374	9.50	0.600	15.25	0.078	2.0	1.181	30.00	M5
						0.372	9.45					1.171	29.75	
25	1	F04	M14 x 1.25	0.984	25	0.374	9.50	0.600	15.25	0.078	2.0	1.181	30.00	M5
						0.372	9.45					1.171	29.75	
40	11/2	F05	M18 x 1.5	1.300	33	0.472	12.00	0.787	20.00	0.060	1.5	1.378	35.00	M6
						0.470	11.95					1.368	34.75	
50	2	F07	M22 x 1.5	1.338	34	0.590	15.00	0.837	21.25	0.060	1.5	2.171	55.00	M8
						0.588	14.95					2.161	54.75	
80	3	F10	M28 x 1.5	1.650	42	0.748	19.00	1.075	27.30	0.090	2.3	2.760	70.00	M10
						0.746	18.95					2.750	69.75	
100	4	F10	M28 x 1.5	1.650	42	0.748	19.00	1.075	27.30	0.090	2.3	2.760	70.00	M10
						0.746	18.95					2.750	69.75	
150	6	F12	M36 x 1.5	2.200	56	0.945	24.00	1.400	35.60	0.090	2.3	3.345	85.00	M12
						0.945	23.95					3.335	84.75	
200	8	F16	M60 x 1.5	3.386	86	1.813	46.00	2.165	55.00	0.090	2.3	5.123	130.00	M20
						1.810	45.95					5.113	129.75	

DIMENSIONES DE LA CONEXIÓN SUPERIOR

DIMILITA	SIMENSIONES DE LA CONEXION SOF ENION											
Tamaño	de la válvula		- 1	4		J	1	<	1	<u>L</u>	1	١
DN	NPS	Brida tipo ISO	pulg	mm	pulg	mm	pulg	mm	pulg	mm	pulg	mm
15	1/2	F03	0.250	6.35	1.417	36.0	1.142	29.0	1.875	47.6	1.375	34.9
20	3/4	F04	0.315	8.00	1.654	42.0	1.322	33.6	2.125	54.0	1.560	39.6
25	1	F04	0.315	8.00	1.654	42.0	1.516	38.5	2.125	54.0	1.750	44.5
40	11/2	F05	0.315	8.00	1.969	50.0	2.258	57.3	2.500	63.5	1.875	47.6
50	2	F07	0.503	12.75	2.756	70.0	3.818	97.0	3.563	90.5	2.750	69.9
80	3	F10	0.535	13.60	4.016	102.0	5.097	129.5	4.938	125.4	3.875	98.4
100	4	F10	0.535	13.60	4.016	102.0	5.723	145.4	4.938	125.4	4.938	125.4
150	6	F12	0.723	18.35	4.921	125.0	7.535	191.4	6.000	152.4	6.000	152.4
200	8	F16	1.000	25.40	6.496	165.0	10.16	258.0	8.250	209.6	8.250	209.6

NOTAS

 Las cotas Y y Z son sólo aplicables cuando la altura de la brida de montaje cae por debajo de la parte superior de la brida (como se muestra).
 Sólo estos tamaños de válvula quedan afectados.
 La cota W se basa en el empernado con tuercas hexagonales pesadas s/. ASME B18.2.2.

DIMENSIONES

DIMER	DIOINES					
Tamaño	de la válvula		١	1	٧	٧
DN	NPS	Tipo	pulg	mm	pulg	mm
15	1/2	315	0.608	15.4	0.649	16.5
15	1/2	330	0.733	18.6	0.721	18.3
20	3/4	315	0.616	15.7	0.783	19.9
20	3/4	330	0.991	25.2	0.814	20.7
25	1	315	0.609	15.5	0.975	24.8
25	1	330	0.922	23.4	1.051	26.7
40	11/2	315	0.248	6.3	1.438	36.5
40	11/2	330	0.811	20.6	0.885	22.5

COMPONENTES PRINCIPALES

No.	Componente	Válvulas de acero al carbono	Válvulas de acero inoxidable
NO.	Componente		
1	Cuerpo	ASTM A216 WCB ^[1]	ASTM A351 CF8M
2	Conector	ASTM A216 WCB ^[1]	ASTM A351 CF8M
7	Bola ^{[3][4]}	Acero inoxidable 316/316L	Acero inoxidable 316/316L
7	Bola ^[5]	AISI 316Ti (con recubrimiento de aleación metálica dura)	AISI 316Ti (con recubrimiento de aleación metálica dura)
8	Eje	Acero inoxidable 316/316L	Acero inoxidable 316/316L
8	Eje ^{[4][5]}	17-4 PH	17-4 PH (alternativo XM19)
21	Collar del collarín	Acero inoxidable 316/316L	Acero inoxidable 316/316L
24/25	Anillo del asiento ^[3]	PTFE virgen	PTFE virgen
24/25	Anillo del asiento ^[4]	Acero inoxidable 316/316L (con inserción de carbono)	Acero inoxidable 316/316L (con inserción de carbono)
24/25	Anillo del asiento ^[5]	AISI 316Ti (con recubrimiento de aleación metálica dura)	AISI 316Ti (con recubrimiento de aleación metálica dura)
50	Espárrago prisionero del asiento	ASTM A193-B7	ASTM A193-B8
51	Tuerca del cuerpo	ASTM A194-2H	ASTM A 194-8

OTROS COMPONENTES

Materiales comunes a las válvulas de acero al carbono v de acero inoxidable

No.	Componente	Material
22	Bola antiestática	ASTM A276-316
23	Muelle antiestático	ASTM B164 MONEL 400
26	Energizador del asiento del conector ^{[4][5]}	ASTM A276-316 / 316L
27	Muelle del asiento	ASTM A313-631 17-7 PH (hasta 350°C) /
		Alloy A 286 (hasta 450°C)
29	Muelle del collarín	Acero inoxidable 17-7 PH (hasta 350°C) Inconel
		(superior a 350°C)
30	Tuerca del eje	ASTM A240-304H
31	Arandela de lengüeta	ASTM A240-304H
50	Cierre primario del cuerpo ^[3]	PTFE
60	Cierre primario del cuerpo ^{[4][5]}	Grafito flexible
45	Cierre primario del eje	25% GF PTFE ^[3] , Grafito flexible ^{[4][5]}
70	Cierre del cuerpo a prueba de fuego ^[3]	PTFE
70	Cierre del cuerpo a prueba de fuego ^{[4][5]}	Grafito flexible
75	Cierre del eje a prueba de fuego	Grafito flexible
76	Cierre del asiento del cuerpo ^{[4][5]}	Grafito flexible
77	Cierre del asiento del conector ^{[4][5]}	Grafito flexible
90	Palanca manual ^[2]	ASTM A276-304
73	Tornillo del aro de retención ^[2]	A2-70
94	Aro de retención	Latón, Niquelado
96	Reductor ^[2]	Comercial
77	Brida de montaje ^[2]	Acero inoxidable
78	Tornillo del reductor ^[2]	A2-70
99	Tornillo de la brida de montaje ^[2]	A2-70
100	Acoplamiento ^[2]	Acero inoxidable
102	Volante ^[2]	Acero al carbono
104	Adaptador de barra en «T» ^[2]	ASTM A351 CF8M
105	Tubo de barra en «T» ^[2]	ASTM A573-70
106	Arandela de barra en «T» ^[2]	ASTM A240-304H
107	Tornillo de barra en «T» ^[2]	A2-70

MATERIALES ALTERNATIVOS

Cuerpo e internos	
Acero bajo en carbono - LCC	
Acero inoxidable dúplex	
Bronce de aluminio	
Monel	
Hav otros materiales disponibles baio pedido.	

Asientos	
PTFE reforzado	
PTFE reforzado con carbono	
TFM 1600	
Carbono Grafito reforzado PEEK™	

ACCESORIOS

Controles de actuación
Dispositivos de bloqueo
Extensiones calorífugas

NOTAS

- 1. Contenido máx. en carbono 0.25%.
- 2. El tipo de operador varía con el tamaño (véase página 2).
- 3. Válvulas con asiento blando.
- 4. Válvulas con asiento de carbono.
- 5. Válvulas con asiento metálico.

La certificación está disponible para la producción estándar, como sigue:

- ensayo hidrostático del cuerpo y del asiento.
- ensayo neumático del asiento.
- material (químico y físico) s/. BS EN 10204 3.1.

COMPONENTES PRINCIPALES

			Grosor de	Dureza de	Límite de
Tipo de r	revestimiento	Descripción	revestimiento	revestimiento	temperatura
HTN-60	Revestimiento de aleación de níquel	Excelente resistencia a la abrasión y a la erosión por partículas.	500 micrones	60 HRc	450°C
	Pulverización con llama y fusión	Elevada resistencia mecánica y buena resistencia a la corrosión.			
HTC-70	Revestimiento de carburo de cromo	Excelente resistencia al desgaste.	200 micrones	70 HRc	450°C
	Pulverización con HVOF	Idóneo para protección contra desgaste por abrasión, erosión y			
		deslizamiento.			
HTT-75	Revestimiento con carburo de tungsteno	Excelentes propiedades ante bajas temperaturas y desgaste.			
	Pulverización con HVOF	Buena resistencia a la corrosión especialmente en soluciones	200 micrones	75 HRc aprox.	350°C
		acuosas.			

MATERIAL DE CARBONO GRAFITO

				Coeficiente de	Límite de
Tip	carbono grafito	Descripción	Densidad	expansión térmica	temperatura
HTO	CG Carbono grafito duro	Un carbono grafito fuerte impregnado con antimonio.			
		Idóneo para disolventes orgánicos limpios y ácido teraftálico purificado (PTA).	2,50 x 10 ³ kg.m ⁻³	4,7 x 10 ⁻⁶ °C	300°C

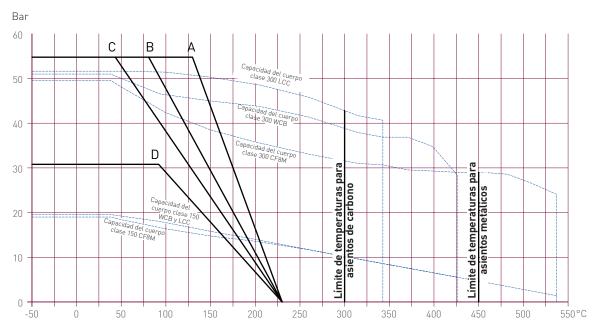
PINTURA/ACABADO ESTÁNDAR

Válvulas de acero al carbono

Protección anticorrosión con imprimación de óxido rojo/fosfato.

Válvulas de acero inoxidable

La fundición se decapa y pasiva mediante ácido para eliminar impurezas superficiales.


Acabados de pintura

Hay disponible una diversidad de especificaciones de pintura para servicios en ambientes marinos y estándar según las necesidades del usuario.

IDENTIFICACIÓN DE LAS LÍNEAS DE LA GRÁFICA

	Material d	lel asiento
Tamaño	PTFE	RTFE
NPS 1/2 - 2	В	А
DN 15 - 50		
NPS 3 - 6	С	А
DN 80 - 150		
NPS 8	D	С
DN 200		

GRÁFICA PRESIÓN/TEMPERATURA

NOTAS

- 1. La máxima capacidad de trabajo de cualquier válvula la da bien la capacidad del cuerpo o la del asiento, en cualquier caso la inferior.
- 2. La tabla de identificación de líneas gráficas indica los materiales de asiento de la válvula representados por las líneas A a D sobre la gráfica.
- 3. Para asientos metálicos y de carbono se deben usar los cuerpos con máxima capacidad. Los asientos de carbono sólo pueden alcanzar a un máx. de 300°C.

HINDLE VÁLVULAS DE BOLA ULTRA-SEAL - SERIE 300

VALORES - C_v/K_v

Tamaño de la válvula		Clase 150		Clase 300	
NPS	DN	C _v	Κ _ν	C _v	K _v
1/2	15	20	17	17	15
3/4	20	34	29	34	29
1	25	140	121	132	114
11/2	40	281	243	265	229
2	50	511	442	470	407
3	80	1380	1194	1200	1038
4	100	2200	1903	2210	1912
6	150	5400	4671	5400	4671
8	200	10660	9221	10660	9221

NOTAS

- 1. Los coeficientes de flujo son para válvulas en posición totalmente abierta.
- Los modelos de válvulas de bola Ultra-Seal se clasifican mediante un código en cuatro partes que indica el tipo de diseño, la bola y el asiento, el tipo de brida y el material del cuerpo para dar el ejemplo que aparece aquí (315FM-15-316).
- 3. Otros tipos de brida disponibles bajo pedido.
- 4. Los materiales para internos y otros componentes para válvulas estándar se dan en la página 10.

SISTEMA DE CODIFICACIÓN DE LAS VÁLVULAS

Los números para los modelos individuales se derivan de una combinación de:

Número de diseño de la serie (300) Clase ANSI (150, 300) Diseño de la bola y del asiento (F , FM , FC) Tipo de brida (ASME 150, 300) Material del cuerpo (161, 316)

GUÍA PARA LA SELECCIÓN

Material del cuerpo

316 Acero Inoxidable A351 CF8M

161 Acero al carbono ASTM A216 WCB

LCC Acero al carbono ASTM A352 LCC

AB2 Bronce de aluminio BS1400 AB2

DUP Aceros inoxidables dúplex