September 2015

Type 63EG-98HM Pilot-Operated Relief Valve or Backpressure Regulator

Introduction

The Type 63EG-98HM can be used for gas, liquid or steam applications. For applications up to 550°F / 288°C, the Type 63EG-98HM utilizes high temperature Ethylenepropylene (EPR) or Perfluoroelastomer (FFKM) for Class VI shutoff. If used in a corrosive service, Perfluoroelastomer (FFKM) and other elastomers are available options that offer superior resistance to heat and most corrosive chemicals.

When using the Type 63EG-98HM with a corrosive liquid, usually water or a water-containing solution, the valve materials must be selected with care. For aqueous solutions, use a Stainless steel linear cage or Whisper Trim™ III Cage and body flange to ensure valve plug travel on a corrosion-free surface.

The Type 63EG-98HM is not an ASME certified device.

Features

- Variety of Construction Materials—WCC steel and CF8M Stainless steel are standard constructions.
 Alloy 20, Hastelloy® C and Monel® are available options upon request.
- Low Build-up Capability—Minimal build-up pressure is required for main valve to achieve wide-open flow.
- Chemically Compatible Elastomers—
 Perfluoroelastomer (FFKM) is available for corrosive chemical applications.
- No Assembly Adjustments Required—Precise machining ensures that the main valve plug shuts off at both the port and upper seals at the same time.
- Fast Speed of Response—High gain piloting system for faster response than standard piloting system.
- Excellent Overpressure Protection—Superior pump bypass regulator for overpressure protection in pump recirculation applications.
- NACE Availability—Optional materials available for applications handling sour gases. These constructions comply with recommendations of the NACE International standards MR0175 and/or MR0103.

Hastelloy® C is a mark owned by Haynes International, Inc. Monel® is a mark owned by Special Metals Corporation

Figure 1. Type 63EG-98HM Pilot-Operated Relief Valve or Backpressure Regulator

- Tight Shutoff—Elastomer seats for Class VI shutoff on high temperature applications to 550°F / 288°C.
- Easily Converted to Differential Control—The pilot is ready for differential backpressure control with the addition of a sealing washer on the adjusting screw.
- Labor-Saving Trim

 Main valve body can stay in-line during maintenance. Tested trim packages can be made up and stocked ahead of time for fast replacement.
- Versatility in Both Liquid and Gas Service—The
 pilot exhaust port and standard tapped pilot spring
 case each come with removable vent for remote piping
 when necessary. The standard tapped pilot spring case
 comes with an optional gasketed closing cap that permits
 pressure loading for remote pneumatic adjustment of the
 set pressure. For remote upstream registration, the pilot
 supply tubing may be disconnected at the 1/4 NPT main
 valve body tapping and this tapping plugged.

Bulletin 71.4:63EG-98HM

Specifications

This section lists the specifications for Type 63EG-98HM relief valves or backpressure regulators. Factory specification is stamped on the nameplate fastened on the regulator at the factory.

Main Valve Body Sizes and End Connection Styles(1)(2)

See Table 1

Maximum Design Pressure(3)

600 psig / 41.4 bar or body rating limit, whichever is lower

Maximum Operating Relief (Inlet) Pressure

Including Build-up(2)(3)

450 psig / 31.0 bar or body rating limit, whichever is lower

Maximum Outlet Pressure(2)(3)

450 psig / 31.0 bar

Maximum Differential Pressure(2)

400 psig / 27.6 bar

Port Diameter and Valve Plug Travels

See Table 2

Relief Set Pressure/Backpressure Control Ranges⁽⁴⁾

See Table 3

Flow Coefficients

See Table 4

Main Valve IEC Sizing Coefficients

See Table 5

Differential and Build-up Pressure Requirements(2)

See Table 6

Main Valve Flow Characteristics

Linear (standard) or Whisper Trim™ III Cage (optional)

Main Valve Flow Direction

In through seat ring and out through cage

Temperature Capabilities(2)

Fluorocarbon (FKM):

0 to 300°F / -18 to 149°C not acceptable in water or

steam in excess of 200°F / 93°C

Ethylenepropylene (EPDM):

Steel: -20 to 350°F / -29 to 177°C

Stainless steel: -40 to 350°F / -40 to 177°C

Perfluoroelastomer (FFKM):

Standard: 0 to 450°F / -18 to 232°C Optional: 0 to 550°F / -18 to 288°C

Approximate Weights (Including pilot)

See Figure 4

Pilot Control Line Connection

1/4 NPT

Pilot Spring Case Connection

1/4 NPT

Pilot Wide-Open Flow Coefficients

C_g: 98; C_v: 2.75; C₁: 35

5/64 in. / 2.00 mm Fixed Bleed Restriction Coefficients

C_q: 4.8; C_v: 0.14

Construction Materials

Type 63EG Main Valve

Body and Body Flange: WCC steel (standard), CF8M Stainless steel, Hastelloy® C, Monel® or

Alloy 20 (optional)

Cage: 316 Stainless steel (standard), 416 SST,

Hastelloy® C, Monel® or Alloy 20 (optional)

Seat Ring and Valve Plug: 416 Stainless steel (standard).

316 Stainless steel, Hastelloy® C, Monel® or Alloy 20 (optional)

Spring: Zinc-plated steel (standard) or

Inconel® X750 (optional)

Piston Ring: Polytetrafluoroethylene (PTFE)

Pipe Plug: Steel (standard), 316 Stainless steel,

Hastelloy® C, Monel® or Alloy 20 (optional)

O-rings and Seals: Fluorocarbon (FKM) (standard).

Ethylenepropylene (EPR) or

Perfluoroelastomer (FFKM) (optional)

Gaskets: Composition (standard) or Graphite (optional)

Type MR98H

Body: WCC steel (standard), CF8M Stainless steel,

Hastelloy® C, Monel® or Alloy 20 (optional)

Spring Case: WCC steel (standard) or

CF8M Stainless steel (optional)

Spring: Steel (standard), Stainless steel,

Inconel® X750 (optional)

Trim: 416 Stainless steel (standard),

316 Stainless steel, Hastelloy® C, Monel® or

Alloy 20 (optional)

Diaphragm: 302 Stainless steel (standard),

Ethylenepropylene (EPR), Hastelloy® C, Monel® or

Fluorocarbon⁽³⁾ (FKM) (optional)

Diaphragm Protector: PTFE (optional)

Diaphragm Gaskets: Composition (standard)

or graphite (optional)

Seat: Fluorocarbon (FKM) (standard),

Ethylenepropylene (EPR) or

Perfluoroelastomer (FFKM) (optional)

Adjusting Screw Sealing Washer for Pressure

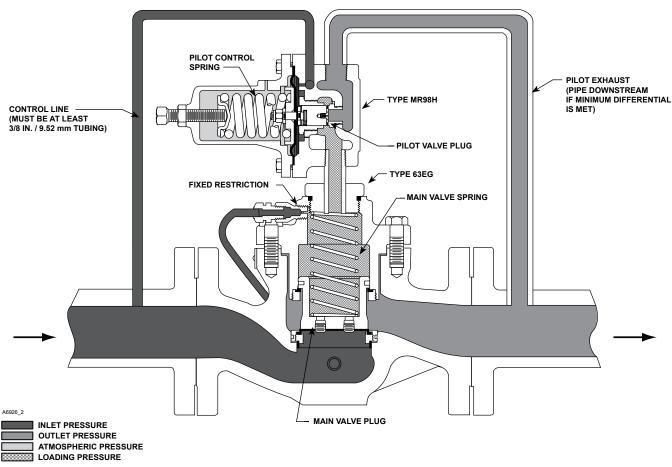
Loaded Pilot: Fluorocarbon (FKM)

Mounting Parts

Restrictor: Steel (standard),

316 Stainless steel or Monel® (optional)

Tubing: Stainless steel (standard) or Monel® (optional)


Fittings: Steel (standard), 316 Stainless steel

or Monel® (optional)

^{1.} Other ratings and end connections can usually be supplied; consult the local Sales Office.

The pressure/temperature limits in this Bulletin and any applicable standard limitation should not be exceeded.
 Fluorocarbon (FKM) diaphragm is limited to 300 psig / 20.7 bar.

^{4.} Set pressure is defined as the pressure at which the pilot start-to-discharge.

Note: On an actual Type 63EG-98HM, the pilot spring case points downstream.

Figure 2. Operational Schematic

Principle of Operation

As long as inlet pressure remains below set pressure, the pilot control spring keeps the pilot valve plug closed. This pressure provides the loading pressure that helps the main valve spring keep the main valve plug tightly shut off.

An inlet pressure rise above the set pressure overcomes the pilot control spring and opens the pilot valve plug. Loading pressure bleeds out the pilot exhaust faster than it can be replaced through the restriction. This permits inlet pressure to unbalance the main valve plug and open the main valve. As inlet pressure drops back to set pressure, the pilot control spring closes the pilot valve plug. Loading pressure again builds up to close the main valve plug.

Example Sizing Problem:

To have a pump recirculation of oil and hold backpressure. The pump capacity is 180 GPM / 681 l/min, the oil has a specific gravity (G) of 1.00 and the temperature is ambient.

 P_1 (Inlet Pressure) = 25 psig / 1.7 bar P_2 (Outlet Pressure) = 15 psig / 1.0 bar Q (Flow) = 180 GPM / 681 I/min Calculated C_v = 57

The differential pressure $(P_1 - P_2)$ is 10 psig / 0.69 bar. From Table 4. it is determined that NPS 2 / DN 50 main valve has the needed capacity. The pilot exhaust is piped downstream of the valve. With the pipeline size equaling the valve body size and using a linear cage, the C_V is equal to 63.3 as shown in Table 4. Since the differential pressure is less than 40 psig / 2.8 bar, Table 5 verifies that the yellow main valve spring can be used. To maintain the best accuracy, always use the lightest spring rate available. The pressure buildup to a wide-open state is 7 psi / 0.48 bar over setpoint. The setpoint on a relief valve or backpressure regulator is defined as when the pilot begins to bubble or open. Since the setpoint is 25 psig / 1.7 bar and the build-up required to fully open the regulator is 7 psi / 0.48 bar, the total upstream pressure would be at 32 psig / 2.2 bar. The differential pressure between $P_1 - P_2$, 32 - 15 psig / 2.2 - 1.0 bar, is 17 psi / 1.2 bar.

Table 1. Body Sizes and End Connection Styles

MAIN VALVE	BODY SIZE	END CONNECTION STYLE
NPS DN		END CONNECTION STILE
2	50	NPT, ASME CL150 RF, CL300 RF, CL600 RF or PN 16/25/40 flanged
3, 4, 6	80, 100, 150	ASME CL150 RF, CL300 RF, CL600 RF or PN 16/25/40 flanged
8 x 6	200 x 150	ASME CL150 RF, CL300 RF and CL600 RF flanged

Table 2. Port Diameters and Valve Plug Travels

BOD	Y SIZE	PORT DI	AMETER	VALVE PLUG TRAVE		
NPS	DN	ln.	In. mm		mm	
2	50	2-3/8	60	1-1/8	29	
3	80	3-3/8	86	1-1/2	38	
4	100	4-3/8	111	2	51	
6	150	7-3/16	183	2	51	
8 x 6	200 x 150	7-3/16	183	2	51	

Table 3. Relief Set Pressure or Backpressure Control Ranges

CONTROL PRES	SSURE RANGE(1)	DART NUMBER	001.00	SPRING FR	EE LENGTH	SPRING WIRE DIAMETER	
psig	bar	PART NUMBER	COLOR	In.	mm	In.	mm
15 to 35	1.0 to 2.4	ERCA04288A0	Yellow	2.50	63.5	0.207	5.26
25 to 75	1.7 to 5.2	ERAA01910A0	Green	2.595	65.9	0.234	5.94
70 to 140	4.8 to 9.7	ERAA01911A0	Red	2.44	62.0	0.283	7.19
130 to 200	9.0 to 13.8	ERAA02889A0	Blue	2.250	57.2	0.331	8.41
150 to 375(2)	10.3 to 25.9(2)	1N943427142	Unpainted	5.063	129	0.394	10.0

^{1.} All springs may be backed off to 0 psig / 0 bar. However, highest capacities and best performances are obtained by using these springs in their recommended ranges. 2. 150 to 375 psig / 10.3 to 25.9 bar spring range is for the Type MR98HH pilot construction.

However, the next consideration is making sure there is enough differential pressure between P₁ and P₂ to fully open the main valve. This minimum differential is determined by the valve plug area and the main valve spring. The smaller the valve plug area (i.e. body size) and the heavier the spring rate (i.e. red spring), the larger the differential requirements. In Table 5 the yellow main valve spring for NPS 2 / DN 50 body requires a differential pressure of 22 psi / 1.5 bar to fully open the main valve. Since it was calculated that 17 psi / 1.2 bar differential pressure is available to open the main valve, the minimum differential pressure can be subtracted from the calculated available differential pressure. In this case that would be 22 - 17 = 5 psig / 1.5 - 1.2 = 0.34 bar.Therefore, the inlet pressure would build-up an additional 5 psig / 0.34 bar in order to fully open the main valve. This will bring the inlet pressure to a total of 37 psig / 2.6 bar, 32 + 5 = 37 psig / 2.2 + 0.35 = 2.6 bar.

If the pilot were exhausting to atmosphere, the available differential pressure would be calculated at 25 psig / 1.7 bar setpoint + 7 psi / 0.48 bar build-up required less the pilot exhaust pressure 0 psig / 0 bar. After calculating the available differential pressure of 32-0=32 psig / 2.2-0=2.2 bar (P_1-P_2) . With the minimum differential required to open the main valve at 22 psi / 1.5 bar, there is enough differential pressure to open the main valve without further build-up.

The $C_{\rm V}$ can be recalculated using the formula below based on the higher differential pressure between the inlet and outlet of the main valve. With a 32 psig / 2.2 bar inlet and a 10 psig / 0.69 bar outlet pressure, the required $C_{\rm V}$ of 38.3 is less than that based upon our original 10 psi / 0.69 bar differential pressure. This might be helpful in determining regulator size with near capacity limits.

$$C_v = Q \sqrt{\frac{G}{\Delta P}}$$

Water and Steam Backpressure Relief

In water and steam applications, a Stainless steel body flange (bonnet) and cage ensure that the valve plug will travel on a corrosion-free surface. The cage supplied in standard Stainless steel constructions is a Whisper Trim™ Cage style. Please note flow coefficients for capacity information.

Application Guidelines

For high cycling applications and/or fast on and off loads, such as solenoid valves and temperatures of 300°F / 149°C or less, Fluorocarbon (FKM) diaphragms are recommended. A PTFE protector comes standard with Fluorocarbon (FKM) diaphragms to prevent chemical attack.

If the application is above 300°F / 149°C and high cycling and/or fast on and off loads occur, a needle valve can be installed on the sense line to buffer the load on the diaphragm.

For high viscosity fluids, the manufacturer will supply a needle valve that can be used to replace the fixed restriction which allows the regulator gain to be adjusted. The build-up may vary from those shown in Table 5. The fixed restriction maintains the proportional gain of the regulator to the published values relating to build-up.

Table 4. Flow Coefficients at Maximum Rated Travels

							PIPING	STYLE						
BODY SIZE.			Line Size	Equals B	ody Size					2:1 Line	Size to Bo	ody Size		
NPS / DN	L	inear Cag	je	Whispe	er Trim™	III Cage	.,	Linear Cage Whisper			er Trim II	r Trim III Cage		
	Cg	Cv	C ₁	Cg	Cv	C ₁	Km	Cg	Cv	C ₁	Cg	Cv	C ₁	K _m
2 / 50	2280	63.3	36.0	1970	54.7	36.0	0.71	2050	59.6	34.4	1830	52.2	35.0	0.71
3 / 80	4630	132	35.1	3760	107	35.0	0.71	4410	128	34.4	3630	106	34.2	0.71
4 / 100	7320	202	36.2	6280	180	34.8	0.71	6940	198	35.0	6020	171	35.2	0.71
6 / 150	12,900	397	32.5	9450	295	32.0	0.71	12,100	381	31.7	9240	291	31.7	0.71
8 x 6 / 200 x 150	17.800	556	32.0	10,500	300	35.0	0.71	17.100	534	32.0	10,270	293	35.0	0.71

Table 5. IEC Sizing Coefficients

BODY SIZE, NPS / DN	X _T	F _D	FL
2 / 50	0.82	0.35	0.84
3 / 80	0.78	0.30	0.84
4 / 100	0.83	0.28	0.84
6 or 8 x 6 / 150 or 200 x 150	0.67	0.28	0.84

Table 6. Minimum and Maximum Differential Pressures and Build-up Required for Wide-Open Flow

BODY SIZE, NPS / DN MAIN VALVE SPRING RANGE, SPRING PART NUMBER		MINIMUM DIFFERENTIAL PRESSURE REQUIRED FOR FULL STROKE ⁽¹⁾		BUILD-UP OVER SET PRESSURE REQUIRED FOR FULL STROKE		MAXIMUM DIFFERENTIAL PRESSURE	
	AND COLOR	psi	bar	psi	bar	psi	bar
	10 to 40 psig / 0.69 to 2.8 bar 14A6768X012 Yellow	22	1.5	7	0.48	40	2.8
2/50	30 to 125 psig / 2.1 to 8.6 bar 14A6626X012 Green	30	2.1	9	0.6	125	8.6
	85 to 400 psig / 5.9 to 27.6 bar 14A6628X012 Red	90	6.2	23	1.6	400	28
	10 to 40 psig / 0.69 to 2.8 bar 14A6771X012 Yellow	19	1.3	5	0.34	40	2.8
3 / 80	30 to 125 psig / 2.1 to 8.6 bar 14A6629X012 Green	25	1.7	7	0.48	125	8.6
	85 to 400 psig / 5.9 to 27.6 bar 14A6631X012 Red	60	4.1	17	1.2	400	28
	10 to 40 psig / 0.69 to 2.8 bar 14A6770X012 Yellow	16	1.1	4	0.28	40	2.8
4 / 100	30 to 125 psig / 2.1 to 8.6 bar 14A6632X012 Green	20	1.4	6	0.4	125	8.6
	85 to 400 psig / 5.9 to 27.6 bar 14A6634X012 Red	55	3.8	16	1.1	400	28
	10 to 40 psig / 0.69 to 2.8 bar 15A2253X012 Yellow	16	1.1	4	0.28	40	2.8
6, 8 x 6 / 150, 200 x 150	30 to 125 psig / 2.1 to 8.6 bar 14A9686X012 Green	20	1.4	6	0.4	125	8.6
	85 to 400 psig / 5.9 to 27.6 bar 15A2615X012 Red	55	3.8	16	1.1	400	28

^{1.} Minimum differential is defined as the difference between the inlet pressure to the main valve body and the exhaust pressure from the pilot outlet. If the pilot exhaust is piped to the immediate downstream system, the differential is between the inlet and outlet pressure of the backpressure regulator. The pilot exhaust also may be discharged to atmosphere.

Installation

Not all codes or regulations will permit these units to be used as final overpressure protection devices.

On the Type 63EG relief valve, normal pressure drop assists shutoff. Therefore, leakage may result during any reverse pressure drop condition.

These valves may be installed in any position desired as long as the flow through the main valve complies with the flow arrow on the body. Pilot exhaust must be piped downstream of the relief valve plug or to a drain.

For safety during shutdown, vent valves will be required immediately upstream and downstream of the main valve on backpressure or bypass installations.

Universal NACE Compliance

Optional materials are available for applications handling sour gases. These constructions comply with the recommendations of NACE International sour service standards.

The manufacturing processes and materials used by Emerson Process Management Regulator Technologies, Inc. assure that all products specified for sour gas service comply with the chemical, physical and metallurgical requirements of NACE MR0175 and/or NACE MR0103. Customers have the responsibility to specify correct materials. Environmental limitations may apply and shall be determined by the user.

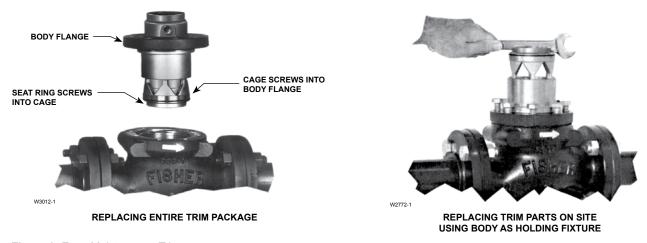
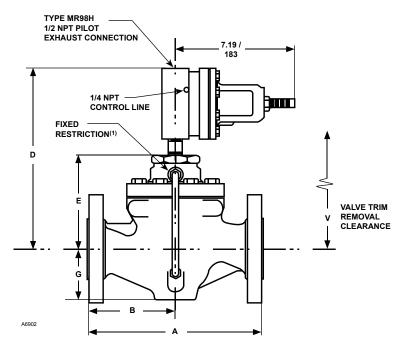



Figure 3. Easy-Maintenance Trim

IN. / mm

1. A needle valve can be used in place of the fixed restriction in high viscosity liquids or if instability of process conditions is present.

Figure 4. Dimensions

Table 7. Dimensions

	DIMENSION, IN. / mm									
BODY SIZE,	A									APPROXIMATE WEIGHT,
NPS / DN	NPT	CL150 RF	CL300 RF	CL600 RF	PN 16/25/40	D E	G	V	LBS / kg	
2 / 50	11.25 / 286	10.00 / 254	10.50 / 267	11.25 / 286	10.31 / 262	10.87 / 276	5.62 / 143	3.06 / 78	12.62 / 321	65 / 30
3 / 80		11.75 / 298	12.50 / 318	13.25 / 337	12.20 / 310	12.25 / 311	7.00 / 178	3.81 / 97	16.25 / 413	105 / 48
4 / 100		13.88 / 353	14.50 / 368	15.50 / 394	13.78 / 350	13.63 / 346	8.38 / 213	5.06 / 128	18.88 / 480	155 / 71
6 / 150		17.75 / 451	18.60 / 472	20.00 / 508	18.00 / 457	14.44 / 367	9.19 / 233	5.56 / 141	20.00 / 508	340 / 155
8 x 6 / 200 x 150		21.38 / 543	22.38 / 569			16.00 / 406	10.75 / 273	7.19 / 183	21.56 / 548	630 / 286

Ordering Information

Ordering Guide

When ordering, complete the Ordering Guide page. Make sure to include the following:

For a standard installation or to obtain a noise prediction for your installation and service conditions, please complete the Specification Worksheet at the bottom of the Ordering Guide page.

Refer to the Specifications section on page 2. Carefully review each specification; then complete the Ordering Guide on page 7. If not otherwise specified, the pilot is factory set in the middle of the set pressure range.

Always specify the type numbers of other desired equipment as well as the main valve and pilot. Unless otherwise ordered, the standard-gain pilot restriction will be provided.

Body Size (Select One) ☐ NPS 2 / DN 50*** ☐ NPS 3 / DN 80*** ☐ NPS 4 / DN 100***	Main Valve Spring Color (Select One) ☐ 10 to 40 psig / 0.69 to 2.8 bar, Yellow** ☐ 30 to 125 psig / 2.1 to 8.6 bar, Green*** ☐ 85 to 400 psig / 5.9 to 27.6 bar, Red***
□ NPS 6 / DN 150*** □ NPS 8 x 6 / DN 200 x 150*	Relief Set Pressure/Backpressure Control Range (Select One)
Body Material (Select One) WCC Steel*** CF8M Stainless steel** Hastelloy® C* Monel®*	☐ 15 to 35 psig / 1.0 to 2.4 bar, Yellow*** ☐ 25 to 75 psig / 1.7 to 5.2 bar, Green*** ☐ 70 to 140 psig / 4.8 to 9.7 bar, Red*** ☐ 130 to 200 psig / 9.0 to 13.8 bar, Blue*** ☐ 150 to 375 psig / 10.3 to 25.9 bar, Unpainted***
☐ Alloy 20* End Connection Style (Select One) ☐ NPT, for NPS 2 only***	Main Valve Spring Material (Select One) ☐ Zinc-plated steel*** ☐ Inconel® X750**
☐ CL150 RF*** ☐ CL300 RF*** ☐ CL600 RF*** ☐ PN 16/25/40* specify rating (NPS 8 x 6 / DN 200 x 150 not available)	O-ring and Seal Material (Select One) ☐ Fluorocarbon (FKM)*** ☐ Ethylenepropylene (EPR)** ☐ Perfluoroelastomer (FFKM)*
Body Flange Material (Select One) ENC Coated WCC Steel*** ENC Coated CF8M Stainless steel**	Gasket Material (Select One) ☐ Composition*** ☐ Graphite**
 □ ENC Coated Hastelloy® C* □ ENC Coated Monel®* □ ENC Coated Alloy 20* 	Tubing Material (Select One) ☐ Stainless steel (standard)*** ☐ Monel®*
☐ Other specify Main Valve Cage Type (Select One) ☐ Linear*** ☐ Whisper Trim™ III Cage**	Fitting Material (Select One) ☐ Steel (standard)*** ☐ 316 Stainless steel** ☐ Monel®*
Main Valve Cage Material (Select One) ☐ 316 Stainless steel (standard)*** ☐ 416 Stainless steel** ☐ Hastelloy® C*	Restrictor Material (Select One) ☐ Steel*** ☐ 316 Stainless steel*** ☐ Monel®*
☐ Monel [®] * ☐ Alloy 20*	Pilot Body Material (Select One) ☐ WCC Steel (standard)***
Main Valve Seat Ring and Valve Plug Material (Select One) ☐ 416 Stainless steel (standard)*** ☐ 316 Stainless steel**	 □ CF8M Stainless steel** □ Hastelloy[®] C* □ Monel[®]* □ Alloy 20*
 ☐ Hastelloy® C* ☐ Monel®* ☐ Alloy 20* 	Pilot Spring Case (Select One) ☐ WCC Steel (standard)*** ☐ CF8M Stainless steel**

Hastelloy® C is a mark owned by Haynes International, Inc. Inconel® and Monel® are marks owned by Special Metals Corporation.

Bulletin 71.4:63EG-98HM

Ordering Guide (continued)

Pilot Diaphragm (Select One) ☐ 302 Stainless steel (standard)*** ☐ Fluorocarbon (FKM)*** ☐ Ethylenepropylene (EPR)** ☐ Hastelloy® C* ☐ Monel®*	
PTFE Diaphragm Protector ☐ Yes	
Pilot Seat (Select One) ☐ Fluorocarbon (FKM) (standard)*** ☐ Ethylenepropylene (EPR)** ☐ Perfluoroelastomer (FFKM)*	
Pilot Trim (Select One) ☐ 416 Stainless steel*** ☐ 316 Stainless steel** ☐ Hastelloy® C* ☐ Monel®* ☐ Alloy 20*	
Hastelloy® C is a mark owned by Haynes International, Inc. Monel® is a mark owned by Special Metals Corporation.	
Regulators Quick Order Guide	

	Regulators Quick Order Guide			
* * *	Readily Available for Shipment			
* *	Allow Additional Time for Shipment			
*	Special Order, Constructed from Non-Stocked Parts. Consult your local Sales Office for Availability.			
Availability of the product being ordered is determined by the component with the longest shipping time for the requested construction.				

NACE Construction	Required	(Optional)
-------------------	----------	------------

☐ Yes

Main Valve Replacement Parts Kit (Optional)

 \square Yes, send one replacement parts kit to match this order.

Pilot Replacement Parts Kit (Optional)

☐ Yes, send one replacement parts kit to match this order.

Specification Worksheet
Application:
Specific Use
Line Size
Fluid Type
Specific Gravity
Temperature
Is this a Relief or Backpressure Application?
Pressure:
Maximum Inlet Pressure
Downstream Pressure
Differential Pressure
Relief (Inlet) Set Pressure
Maximum Flow
Accuracy Requirements:
Less Than or Equal To:
□ 5% □ 10% □ 20% □ 40%

Industrial Regulators

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside U.S. +1 972 548 3574

Asia-Pacific

Shanghai 201206, China Tel: +86 21 2892 9000

Europe

Bologna 40013, Italy Tel: +39 051 419 0611

Middle East and Africa Dubai, United Arab Emirates

Tel: +971 4811 8100

Natural Gas Technologies

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside U.S. +1 972 548 3574

Asia-Pacific

Singapore 128461, Singapore

Tel: +65 6770 8337

Europe

Bologna 40013, Italy Tel: +39 051 419 0611 Chartres 28008, France Tel: +33 2 37 33 47 00

Middle East and Africa Dubai, United Arab Emirates

Tel: +971 4811 8100

TESCOM

Emerson Process Management Tescom Corporation

USA - Headquarters Elk River, Minnesota 55330-2445, USA

Tels: +1 763 241 3238 +1 800 447 1250

Europe

Selmsdorf 23923, Germany Tel: +49 38823 31 287

Asia-Pacific

Shanghai 201206, China Tel: +86 21 2892 9499

For further information visit www.fisherregulators.com

The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their prospective owners. Fisher is a mark owned by Fisher Controls International LLC, a business of Emerson Process Management.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice

Emerson Process Management Regulator Technologies, Inc. does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management Regulator Technologies, Inc. product remains solely with the purchaser.

